期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
围长为8的较大列重准循环低密度奇偶校验码的行重普适代数构造
1
作者 张国华 秦煜 +1 位作者 娄蒙娟 方毅 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第7期3019-3025,共7页
适合于任意行重(即行重普适(RWU))的无小环准循环(QC)低密度奇偶校验(LDPC)短码,对于LDPC码的理论研究和工程应用具有重要意义。具有行重普适特性且消除4环6环的现有构造方法,只能针对列重为3和4的情况提供QC-LDPC短码。该文在最大公约... 适合于任意行重(即行重普适(RWU))的无小环准循环(QC)低密度奇偶校验(LDPC)短码,对于LDPC码的理论研究和工程应用具有重要意义。具有行重普适特性且消除4环6环的现有构造方法,只能针对列重为3和4的情况提供QC-LDPC短码。该文在最大公约数(GCD)框架的基础上,对于列重为5和6的情况,提出了3种具有行重普适特性且消除4环6环的构造方法。与现有的行重普适方法相比,新方法提供的码长从目前的与行重呈4次方关系锐减至与行重呈3次方关系,因而可以为QC-LDPC码的复合构造和高级优化等需要较大列重基础码的场合提供行重普适的无4环无6环短码。此外,与基于计算机搜索的对称结构QC-LDPC码相比,新码不仅无需搜索、描述复杂度更低,而且具有更好的译码性能。 展开更多
关键词 低密度奇偶校验码 准循环 围长 最大公约数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部