We succeed in inserting a number of nitrogen atoms into the R_2Fe_(17)and RTiFe_(11)intermetallic compounds.The nitrides retain original Th_2Zn_(17)(or Th_2Ni_(17_)and ThMn_(12)structures,but with an increase in the u...We succeed in inserting a number of nitrogen atoms into the R_2Fe_(17)and RTiFe_(11)intermetallic compounds.The nitrides retain original Th_2Zn_(17)(or Th_2Ni_(17_)and ThMn_(12)structures,but with an increase in the unit cell volume.The interstitial nitrogen atoms are found to have an effect of increasing the Curie tempera- ture and saturation magnetization.Moreover,a distinct effect on the magnetocrystalline anisotropy is also ob- served in these nitride compounds.Especially,NdTiFe_(11)N_(0.5)and SmTiFe_(11)N_2 have excellent intrinsic magnetic properties favourable for permanent magnet applications.展开更多
DyTiFe_(11) compound is a ferromagnetic substance.It has tetragonal body-centered ThMn_(12)-type crystallographic structure.At room temperature,the easy magnetization direction is the c-axis.A spin reorientation begin...DyTiFe_(11) compound is a ferromagnetic substance.It has tetragonal body-centered ThMn_(12)-type crystallographic structure.At room temperature,the easy magnetization direction is the c-axis.A spin reorientation begins to appear at about 175K.The contribution of Fe sublattice to magnetocrystalline anisotropy was determined by experiments and that of Dy sublattice was obtained by using single ion model calculation.Results show that the spin reorientation arises from the competition of anisotropy between Fe and Dy sublattices.展开更多
By a proper thermal treatment, the nitrogen atoms can enter the R2Fe17 structure. The crystallographic and intrinsic magnetic properties as well as their relationship have been studied by magnetic measurements, X-ray ...By a proper thermal treatment, the nitrogen atoms can enter the R2Fe17 structure. The crystallographic and intrinsic magnetic properties as well as their relationship have been studied by magnetic measurements, X-ray and neutron diffraction techniques. The neutron data indicate that the nitrogen atoms occupy the interstitial sites in the Th2Zn17-type rhom-bohedral structure. The inserting nitrogen atoms are found to dilate the cell volume, increase the Curie temperature and enhance the saturation moment by raising the difference in the electron number between the spin-up and spin-down 3d subbands of the Fe atoms. Furthermore, the nitrogen atoms have an important effect on the magnetocrystallic anisotropy, which results in an easy axis with Sm2Fe17N2.4. All these make Sm2Fe17N2.4 favorable for permanent magnet applications.展开更多
文摘We succeed in inserting a number of nitrogen atoms into the R_2Fe_(17)and RTiFe_(11)intermetallic compounds.The nitrides retain original Th_2Zn_(17)(or Th_2Ni_(17_)and ThMn_(12)structures,but with an increase in the unit cell volume.The interstitial nitrogen atoms are found to have an effect of increasing the Curie tempera- ture and saturation magnetization.Moreover,a distinct effect on the magnetocrystalline anisotropy is also ob- served in these nitride compounds.Especially,NdTiFe_(11)N_(0.5)and SmTiFe_(11)N_2 have excellent intrinsic magnetic properties favourable for permanent magnet applications.
文摘DyTiFe_(11) compound is a ferromagnetic substance.It has tetragonal body-centered ThMn_(12)-type crystallographic structure.At room temperature,the easy magnetization direction is the c-axis.A spin reorientation begins to appear at about 175K.The contribution of Fe sublattice to magnetocrystalline anisotropy was determined by experiments and that of Dy sublattice was obtained by using single ion model calculation.Results show that the spin reorientation arises from the competition of anisotropy between Fe and Dy sublattices.
基金Project supported by the National Natural Science Foundation of China and the Open Magnetism Laboratory.
文摘By a proper thermal treatment, the nitrogen atoms can enter the R2Fe17 structure. The crystallographic and intrinsic magnetic properties as well as their relationship have been studied by magnetic measurements, X-ray and neutron diffraction techniques. The neutron data indicate that the nitrogen atoms occupy the interstitial sites in the Th2Zn17-type rhom-bohedral structure. The inserting nitrogen atoms are found to dilate the cell volume, increase the Curie temperature and enhance the saturation moment by raising the difference in the electron number between the spin-up and spin-down 3d subbands of the Fe atoms. Furthermore, the nitrogen atoms have an important effect on the magnetocrystallic anisotropy, which results in an easy axis with Sm2Fe17N2.4. All these make Sm2Fe17N2.4 favorable for permanent magnet applications.