供电电压闪变可能对异步电动机转子故障在线检测产生不利影响,导致基于定子电流信号分析(motor current signature analysis,MCSA)的转子故障在线检测方法失效。通过理论分析,揭示供电电压闪变恶化转子故障在线检测性能的机制。提出免...供电电压闪变可能对异步电动机转子故障在线检测产生不利影响,导致基于定子电流信号分析(motor current signature analysis,MCSA)的转子故障在线检测方法失效。通过理论分析,揭示供电电压闪变恶化转子故障在线检测性能的机制。提出免于供电电压闪变影响的异步电动机转子故障在线检测方法,首先,根据转子故障主特征频率分量预判转子健康或故障;继而,根据转子故障独有的辅助特征频率分量进一步确认转子健康或故障。仿真与实验结果证明了该方法的有效性。展开更多
提出了一种基于多重信号分类(Multiple Signal Classification,MUSIC)与模拟退火算法(Simulated Annealing Algorithm,SAA)的异步电动机转子断条故障检测新方法。首先以转子断条故障仿真信号检验MUSIC性能,结果表明:MUSIC对于短时信号...提出了一种基于多重信号分类(Multiple Signal Classification,MUSIC)与模拟退火算法(Simulated Annealing Algorithm,SAA)的异步电动机转子断条故障检测新方法。首先以转子断条故障仿真信号检验MUSIC性能,结果表明:MUSIC对于短时信号具备高频率分辨力,可以准确计算转子断条故障特征分量以及其他分量之频率;但对诸频率分量幅值、初相角,MUSIC无能为力。为此,引入SAA确定诸频率分量幅值、初相角,效果理想。进而,对一台Y100L—2型3kW笼型异步电动机完成了转子断条故障检测实验。实验结果表明:基于MUSIC与SAA的异步电动机转子断条故障检测方法是切实可行的,并且因仅需处理短时信号而适用于负荷波动、噪声等干扰严重情况。展开更多
提出一种基于旋转不变信号参数估计技术(Estimation of signal parameters via rotational invariance technique,ESPRIT)与模式搜索算法(Pattern search algorithm,PSA)的异步电动机转子故障检测新方法。模拟形成转子故障情况下的定子...提出一种基于旋转不变信号参数估计技术(Estimation of signal parameters via rotational invariance technique,ESPRIT)与模式搜索算法(Pattern search algorithm,PSA)的异步电动机转子故障检测新方法。模拟形成转子故障情况下的定子电流信号并以之检验ESPRIT性能。结果表明:即使对于短时信号,ESPRIT仍具备高频率分辨力,可以准确估计定子电流各个分量的频率;但对其幅值、初相角的估计欠缺准确性、稳定性。随后,采用PSA确定各个频率分量的幅值、初相角。对一台异步电动机完成了转子故障检测试验,结果表明:基于ESPRIT与PSA的异步电动机转子故障检测方法是切实可行的,并且因仅需短时信号即可达到高频率分辨力而适用于负荷波动情况。展开更多
提出了一种基于奇异值分解(Singular Value Decomposition,SVD)滤波和快速四阶累积量(Speedy Fourth-Order Cumulants,SFOC)旋转不变信号参数估计技术(Estimation of Signal Parameters via Rotational Invariance Technique,ESPRIT)的...提出了一种基于奇异值分解(Singular Value Decomposition,SVD)滤波和快速四阶累积量(Speedy Fourth-Order Cumulants,SFOC)旋转不变信号参数估计技术(Estimation of Signal Parameters via Rotational Invariance Technique,ESPRIT)的异步电动机转子断条故障检测方法。SVD滤波方法可以理想地滤除电机定子电流信号的基频分量与背景噪声,从而凸显转子断条故障特征频率分量;四阶累积量ESPRIT方法可以有效减少噪声干扰、扩展信号阵元并以高频率分辨力提取定子电流信号中的转子断条故障特征频率分量;特别是,将二者结合即可在短时采样信号条件下以高频率分辨力提取转子断条故障特征频率分量。为了改善四阶累积量ESPRIT方法的快速性,提出了精简算法以消除均匀线阵的DOA(direction ofarrival)估计中的大量冗余数据,从而大幅减小计算量。转子断条故障检测实验表明:基于SVD和SFOC-ESPRIT的异步电动机转子断条故障检测方法效果良好。展开更多
文摘供电电压闪变可能对异步电动机转子故障在线检测产生不利影响,导致基于定子电流信号分析(motor current signature analysis,MCSA)的转子故障在线检测方法失效。通过理论分析,揭示供电电压闪变恶化转子故障在线检测性能的机制。提出免于供电电压闪变影响的异步电动机转子故障在线检测方法,首先,根据转子故障主特征频率分量预判转子健康或故障;继而,根据转子故障独有的辅助特征频率分量进一步确认转子健康或故障。仿真与实验结果证明了该方法的有效性。
文摘提出了一种基于多重信号分类(Multiple Signal Classification,MUSIC)与模拟退火算法(Simulated Annealing Algorithm,SAA)的异步电动机转子断条故障检测新方法。首先以转子断条故障仿真信号检验MUSIC性能,结果表明:MUSIC对于短时信号具备高频率分辨力,可以准确计算转子断条故障特征分量以及其他分量之频率;但对诸频率分量幅值、初相角,MUSIC无能为力。为此,引入SAA确定诸频率分量幅值、初相角,效果理想。进而,对一台Y100L—2型3kW笼型异步电动机完成了转子断条故障检测实验。实验结果表明:基于MUSIC与SAA的异步电动机转子断条故障检测方法是切实可行的,并且因仅需处理短时信号而适用于负荷波动、噪声等干扰严重情况。
文摘提出一种基于旋转不变信号参数估计技术(Estimation of signal parameters via rotational invariance technique,ESPRIT)与模式搜索算法(Pattern search algorithm,PSA)的异步电动机转子故障检测新方法。模拟形成转子故障情况下的定子电流信号并以之检验ESPRIT性能。结果表明:即使对于短时信号,ESPRIT仍具备高频率分辨力,可以准确估计定子电流各个分量的频率;但对其幅值、初相角的估计欠缺准确性、稳定性。随后,采用PSA确定各个频率分量的幅值、初相角。对一台异步电动机完成了转子故障检测试验,结果表明:基于ESPRIT与PSA的异步电动机转子故障检测方法是切实可行的,并且因仅需短时信号即可达到高频率分辨力而适用于负荷波动情况。
文摘提出了一种基于奇异值分解(Singular Value Decomposition,SVD)滤波和快速四阶累积量(Speedy Fourth-Order Cumulants,SFOC)旋转不变信号参数估计技术(Estimation of Signal Parameters via Rotational Invariance Technique,ESPRIT)的异步电动机转子断条故障检测方法。SVD滤波方法可以理想地滤除电机定子电流信号的基频分量与背景噪声,从而凸显转子断条故障特征频率分量;四阶累积量ESPRIT方法可以有效减少噪声干扰、扩展信号阵元并以高频率分辨力提取定子电流信号中的转子断条故障特征频率分量;特别是,将二者结合即可在短时采样信号条件下以高频率分辨力提取转子断条故障特征频率分量。为了改善四阶累积量ESPRIT方法的快速性,提出了精简算法以消除均匀线阵的DOA(direction ofarrival)估计中的大量冗余数据,从而大幅减小计算量。转子断条故障检测实验表明:基于SVD和SFOC-ESPRIT的异步电动机转子断条故障检测方法效果良好。