期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于图优化的GNSS/双目视觉/惯性SLAM系统开发及应用
1
作者 夏琳琳 宋梓维 +1 位作者 方亮 孙伍虹志 《中国惯性技术学报》 EI CSCD 北大核心 2024年第5期475-483,共9页
为提高机器人室外长航时定位精度,提出一种基于图优化的全球导航卫星系统(GNSS)/双目视觉/惯性同时定位与建图(SLAM)系统开发及应用。将空间中的线特征作为几何约束的补充,集成至前端的特征提取及后端的位姿优化线程,提升位姿解算精度... 为提高机器人室外长航时定位精度,提出一种基于图优化的全球导航卫星系统(GNSS)/双目视觉/惯性同时定位与建图(SLAM)系统开发及应用。将空间中的线特征作为几何约束的补充,集成至前端的特征提取及后端的位姿优化线程,提升位姿解算精度。同时,以因子图构建联合优化的图结构,并推导出全局观测误差模型。近200 m的BullDog-CX机器人巡检结果表明,所提算法相比于VINSFusion和PL-VINS分别取得约12.6%及3.4%的定位精度提升,为室外机器人长航时导航提供了一种可行方案。 展开更多
关键词 GNSS/双目视觉/惯性SLAM系统 图优化 线特征约束 全局观测 多传感器融合
下载PDF
基于改进KeyPointNet网络的特征点检测和描述
2
作者 孙伍虹志 《长江信息通信》 2024年第8期31-33,共3页
传统手工设计的特征提取方法如SIFT、ORB等,在光照或视角变化等挑战性场景中特征提取鲁棒性、精度都不如基于深度学习的特征点检测网络。启发于KeyPointNet网络在图像特征提取任务中表现的鲁棒性,文章利用轻量化网络设计KeyPointNet改... 传统手工设计的特征提取方法如SIFT、ORB等,在光照或视角变化等挑战性场景中特征提取鲁棒性、精度都不如基于深度学习的特征点检测网络。启发于KeyPointNet网络在图像特征提取任务中表现的鲁棒性,文章利用轻量化网络设计KeyPointNet改进模型,旨在使其满足一定精度的情况下,在资源受限的平台上实时运行。实验结果表明,改进后的KeyPointNet在HPatches数据集上,重复性与单应性精度都优于原KeyPointNet模型,并且改进后的网络模型参数量大约压缩了88.83%,浮点运算次数减少了约86.62%,更适合部署在实际场景中。 展开更多
关键词 深度学习 图像特征提取 轻量化网络 KeyPointNet网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部