真实场景点云不仅具有点云的空间几何信息,还具有三维物体的颜色信息,现有的网络无法有效利用真实场景的局部特征以及空间几何特征信息,因此提出了一种双通道特征融合的真实场景点云语义分割方法DCFNet(dual-channel feature fusion of ...真实场景点云不仅具有点云的空间几何信息,还具有三维物体的颜色信息,现有的网络无法有效利用真实场景的局部特征以及空间几何特征信息,因此提出了一种双通道特征融合的真实场景点云语义分割方法DCFNet(dual-channel feature fusion of real scene for point cloud semantic segmentation)可用于不同场景下的室内外场景语义分割。更具体地说,为了解决不能充分提取真实场景点云颜色信息的问题,该方法采用上下两个输入通道,通道均采用相同的特征提取网络结构,其中上通道的输入是完整RGB颜色和点云坐标信息,该通道主要关注于复杂物体对象场景特征,下通道仅输入点云坐标信息,该通道主要关注于点云的空间几何特征;在每个通道中为了更好地提取局部与全局信息,改善网络性能,引入了层间融合模块和Transformer通道特征扩充模块;同时,针对现有的三维点云语义分割方法缺乏关注局部特征与全局特征的联系,导致对复杂场景的分割效果不佳的问题,对上下两个通道所提取的特征通过DCFFS(dual-channel feature fusion segmentation)模块进行融合,并对真实场景进行语义分割。对室内复杂场景和大规模室内外场景点云分割基准进行了实验,实验结果表明,提出的DCFNet分割方法在S3DIS Area5室内场景数据集以及STPLS3D室外场景数据集上,平均交并比(MIOU)分别达到71.18%和48.87%,平均准确率(MACC)和整体准确率(OACC)分别达到77.01%与86.91%,实现了真实场景的高精度点云语义分割。展开更多
激光雷达点云3D物体检测,对于小物体如行人、自行车的检测精度较低,容易漏检误检,提出一种多尺度Transformer激光雷达点云3D物体检测方法 MSPT-RCNN(multi-scale point transformer-RCNN),提高点云3D物体检测精度。该方法包含两个阶段,...激光雷达点云3D物体检测,对于小物体如行人、自行车的检测精度较低,容易漏检误检,提出一种多尺度Transformer激光雷达点云3D物体检测方法 MSPT-RCNN(multi-scale point transformer-RCNN),提高点云3D物体检测精度。该方法包含两个阶段,即第一阶段(RPN)和第二阶段(RCNN)。RPN阶段通过多尺度Transformer网络提取点云特征,该网络包含多尺度邻域嵌入模块和跳跃连接偏移注意力模块,获取多尺度邻域几何信息和不同层次全局语义信息,生成高质量初始3D包围盒;在RCNN阶段,引入包围盒内的点云多尺度邻域几何信息,优化了包围盒位置、尺寸、朝向和置信度等信息。实验结果表明,该方法(MSPT-RCNN)具有较高检测精度,特别是对于远处和较小物体,提升更高。MSPT-RCNN通过有效学习点云数据中的多尺度几何信息,提取不同层次有效的语义信息,能够有效提升3D物体检测精度。展开更多
文摘真实场景点云不仅具有点云的空间几何信息,还具有三维物体的颜色信息,现有的网络无法有效利用真实场景的局部特征以及空间几何特征信息,因此提出了一种双通道特征融合的真实场景点云语义分割方法DCFNet(dual-channel feature fusion of real scene for point cloud semantic segmentation)可用于不同场景下的室内外场景语义分割。更具体地说,为了解决不能充分提取真实场景点云颜色信息的问题,该方法采用上下两个输入通道,通道均采用相同的特征提取网络结构,其中上通道的输入是完整RGB颜色和点云坐标信息,该通道主要关注于复杂物体对象场景特征,下通道仅输入点云坐标信息,该通道主要关注于点云的空间几何特征;在每个通道中为了更好地提取局部与全局信息,改善网络性能,引入了层间融合模块和Transformer通道特征扩充模块;同时,针对现有的三维点云语义分割方法缺乏关注局部特征与全局特征的联系,导致对复杂场景的分割效果不佳的问题,对上下两个通道所提取的特征通过DCFFS(dual-channel feature fusion segmentation)模块进行融合,并对真实场景进行语义分割。对室内复杂场景和大规模室内外场景点云分割基准进行了实验,实验结果表明,提出的DCFNet分割方法在S3DIS Area5室内场景数据集以及STPLS3D室外场景数据集上,平均交并比(MIOU)分别达到71.18%和48.87%,平均准确率(MACC)和整体准确率(OACC)分别达到77.01%与86.91%,实现了真实场景的高精度点云语义分割。
文摘目的进一步提高图像复原的性能。方法提出一种基于隐式知识迁移(Implicit knowledge transfer)和显式掩码引导(Explicit mask guide)的图像复原通用方法IECNN。将一般的图像复原任务明确拆分为退化区域定位和区域引导复原等2个阶段。首先利用掩码预测网络中固有的退化定位知识,并进行训练,检测严重退化区域,然后提出一种自适应的注意力知识蒸馏方法,将退化区域知识隐式迁移到复原网络中,且无须任何额外的推理计算,随后提出一种掩码引导下的2种模块,在扩充全局感受野的同时重点关注退化区域,以此显式进行图像复原。结果在进行消融实验时,通过可视化特征图与成对关系图直观展现了各个组件的有效性。为了证明文中方法的通用性,在4种空间变化的图像复原任务中,以峰值信噪比(Peak signal to noise ratio)和结构相似性(Structural similarity)2个指标与其他基准方法进行了定量比较,在视觉效果上进行了定性比较。结论证明了隐式知识迁移和显式掩码引导对于图像复原的有效性。
文摘激光雷达点云3D物体检测,对于小物体如行人、自行车的检测精度较低,容易漏检误检,提出一种多尺度Transformer激光雷达点云3D物体检测方法 MSPT-RCNN(multi-scale point transformer-RCNN),提高点云3D物体检测精度。该方法包含两个阶段,即第一阶段(RPN)和第二阶段(RCNN)。RPN阶段通过多尺度Transformer网络提取点云特征,该网络包含多尺度邻域嵌入模块和跳跃连接偏移注意力模块,获取多尺度邻域几何信息和不同层次全局语义信息,生成高质量初始3D包围盒;在RCNN阶段,引入包围盒内的点云多尺度邻域几何信息,优化了包围盒位置、尺寸、朝向和置信度等信息。实验结果表明,该方法(MSPT-RCNN)具有较高检测精度,特别是对于远处和较小物体,提升更高。MSPT-RCNN通过有效学习点云数据中的多尺度几何信息,提取不同层次有效的语义信息,能够有效提升3D物体检测精度。