Combining the mean field Pozhar-Gubbins(PG)theory and the weighted density approximation,a novel method for local thermal conductivity of inhomogeneous fluids is proposed.The correlation effect that is beyond the mean...Combining the mean field Pozhar-Gubbins(PG)theory and the weighted density approximation,a novel method for local thermal conductivity of inhomogeneous fluids is proposed.The correlation effect that is beyond the mean field treatment is taken into account by the simulation-based empirical correlations.The application of this method to confined argon in slit pore shows that its prediction agrees well with the simulation results,and that it performs better than the original PG theory as well as the local averaged density model(LADM).In its further application to the nano-fluidic films,the influences of fluid parameters and pore parameters on the thermal conductivity are calculated and investigated.It is found that both the local thermal conductivity and the overall thermal conductivity can be significantly modulated by these parameters.Specifically,in the supercritical states,the thermal conductivity of the confined fluid shows positive correlation to the bulk density as well as the temperature.However,when the bulk density is small,the thermal conductivity exhibits a decrease-increase transition as the temperature is increased.This is also the case in which the temperature is low.In fact,the decrease-increase transition in both the small-bulk-density and low-temperature cases arises from the capillary condensation in the pore.Furthermore,smaller pore width and/or stronger adsorption potential can raise the critical temperature for condensation,and then are beneficial to the enhancement of the thermal conductivity.These modulation behaviors of the local thermal conductivity lead immediately to the significant difference of the overall thermal conductivity in different phase regions.展开更多
For the asymmetrical colloidal mixture subject to a confining potential and an external multi-Gauss potential, the separation of species is studied based on the classical density functional theory of simple fluids. Th...For the asymmetrical colloidal mixture subject to a confining potential and an external multi-Gauss potential, the separation of species is studied based on the classical density functional theory of simple fluids. The multi-Gauss potential consists of several Gauss barriers, which are distributed along the axial direction with uniform distance. The barrier width,barrier distance, and barrier height are individually adjusted to investigate their effects on the species separation. From the numerical results, it is concluded that in each condition, the competition between the external potential and the depletion potential determines the phase equilibrium and the separation. Species separation appears only in the region where the depletion is dominant. On the contrary, both species are absent in the regions where the external potential takes the absolute advantage.展开更多
Based on classical density functional theory, an expression of the pressure tensor for inhomogeneous fluids is presented. This takes into account greater correlation between particles, especially for systems that are ...Based on classical density functional theory, an expression of the pressure tensor for inhomogeneous fluids is presented. This takes into account greater correlation between particles, especially for systems that are geometrically confined or involve an interface. The density and pressure components of Lennard-Jones fluids confined in hard and softened nano-cavities are calculated. A comparison between the results of this work and IK expression suggests that the agreement depends on temperature. The interracial tension for hard sphere fluids agrees well with the Monte Carlo result when the bulk density is not too large. The results of the solid fluid interracial tension for Lennard-Jones fluids demonstrate that different types of external potentials modulate the interfacial tension in different manners.展开更多
Classical density functional theory is used to study the associating Lennard Jones fluids in contact with spherical hard wall of different curvature radii.The interfacial properties including contact density and fluid...Classical density functional theory is used to study the associating Lennard Jones fluids in contact with spherical hard wall of different curvature radii.The interfacial properties including contact density and fluid-solid intcrfacial tension are investigated.The influences of associating energy,curvature of hard wall and the hulk density of fluids on these properties are analyzed in detail.The results may provide helpful clues to understand the interfacial properties of other complex fluids.展开更多
Based on statistical mechanics for classical fluids, the general expressions for the elastic moduli of inhomogeneous fluid are derived and expressed as functionals of density functions. Within the framework of classic...Based on statistical mechanics for classical fluids, the general expressions for the elastic moduli of inhomogeneous fluid are derived and expressed as functionals of density functions. Within the framework of classical density functional theory, the bulk modulus of confined argon in slit pore is calculated under different conditions. The effects of vapor pressure, temperature, and pore width on modulus are calculated and investigated. Obvious confinement-induced effect has been observed in the confined argon. In addition, the solvation pressure dependence of the bulk modulus is also investigated,and the results suggest that the Tait–Murnaghan equation is still valid for the confined fluids.展开更多
By using the statistical mechanics, the pressure tensor for the multi component fluid mixture is derived. With the help of the classical density functional theory, profiles of the pressure components are calculated, a...By using the statistical mechanics, the pressure tensor for the multi component fluid mixture is derived. With the help of the classical density functional theory, profiles of the pressure components are calculated, and the influence of the total volume fraction, ratio of volume fraction, and size asymmetry on the pressure are studied. In addition, our results show that for the mixture confined in the hard cavity, the pressure shows a discontinuity near the cavity wall. However, in the soft cavity condition, the discontinuity disappears.展开更多
Two-particle cluster theory is applied to study the biaxial nematic phase formed by biaxial molecules interacting with a simplified model proposed by Sonnet et al. [Phys. Rev. E 67 (2003) 061701]. For the temperatur...Two-particle cluster theory is applied to study the biaxial nematic phase formed by biaxial molecules interacting with a simplified model proposed by Sonnet et al. [Phys. Rev. E 67 (2003) 061701]. For the temperature dependences of the internal energy per particle and of the order parameters, the two-particle theory yields an improved result compared with mean field theory. Concerning the phase diagram, the two-particle theory gives the numerical result in qualitative agreement with the mean field theory.展开更多
Based on statistical mechanics for classical fluids,general expressions for hydrodynamic stress in inhomogeneous colloidal suspension are derived on a molecular level.The result is exactly an extension of the Iving-Ki...Based on statistical mechanics for classical fluids,general expressions for hydrodynamic stress in inhomogeneous colloidal suspension are derived on a molecular level.The result is exactly an extension of the Iving-Kirkwood stress for atom fluids to colloidal suspensions where dynamic correlation emerges.It is found that besides the inter-particle distance,the obtained hydrodynamic stress depends closely on the velocity of the colloidal particles in the suspension,which is responsible for the appearance of the solvent-mediated hydrodynamic force.Compared to Brady’s stresslets for the bulk stress,our results are applicable to inhomogeneous suspension,where the inhomogeneity and anisotropy of the dynamic correlation should be taken into account.In the near-field regime where the packing fraction of colloidal particles is high,our results can reduce to those of Brady.Therefore,our results are applicable to the suspensions with low,moderate,or even high packing fraction of colloidal particles.展开更多
基金Project supported by the Fundamental Research Fund for the Central Universities of Chinathe Research Project for Independently Cultivate Talents of Hebei Agricultural University (Grant No.ZY2023007)。
文摘Combining the mean field Pozhar-Gubbins(PG)theory and the weighted density approximation,a novel method for local thermal conductivity of inhomogeneous fluids is proposed.The correlation effect that is beyond the mean field treatment is taken into account by the simulation-based empirical correlations.The application of this method to confined argon in slit pore shows that its prediction agrees well with the simulation results,and that it performs better than the original PG theory as well as the local averaged density model(LADM).In its further application to the nano-fluidic films,the influences of fluid parameters and pore parameters on the thermal conductivity are calculated and investigated.It is found that both the local thermal conductivity and the overall thermal conductivity can be significantly modulated by these parameters.Specifically,in the supercritical states,the thermal conductivity of the confined fluid shows positive correlation to the bulk density as well as the temperature.However,when the bulk density is small,the thermal conductivity exhibits a decrease-increase transition as the temperature is increased.This is also the case in which the temperature is low.In fact,the decrease-increase transition in both the small-bulk-density and low-temperature cases arises from the capillary condensation in the pore.Furthermore,smaller pore width and/or stronger adsorption potential can raise the critical temperature for condensation,and then are beneficial to the enhancement of the thermal conductivity.These modulation behaviors of the local thermal conductivity lead immediately to the significant difference of the overall thermal conductivity in different phase regions.
基金Project supported by the Fundamental Research Funds for the Central Universities,China(Grant No.13MS105)
文摘For the asymmetrical colloidal mixture subject to a confining potential and an external multi-Gauss potential, the separation of species is studied based on the classical density functional theory of simple fluids. The multi-Gauss potential consists of several Gauss barriers, which are distributed along the axial direction with uniform distance. The barrier width,barrier distance, and barrier height are individually adjusted to investigate their effects on the species separation. From the numerical results, it is concluded that in each condition, the competition between the external potential and the depletion potential determines the phase equilibrium and the separation. Species separation appears only in the region where the depletion is dominant. On the contrary, both species are absent in the regions where the external potential takes the absolute advantage.
基金Project supported by the North China Electric Power University Campus Foundation (Grant No. 200911036)
文摘Based on classical density functional theory, an expression of the pressure tensor for inhomogeneous fluids is presented. This takes into account greater correlation between particles, especially for systems that are geometrically confined or involve an interface. The density and pressure components of Lennard-Jones fluids confined in hard and softened nano-cavities are calculated. A comparison between the results of this work and IK expression suggests that the agreement depends on temperature. The interracial tension for hard sphere fluids agrees well with the Monte Carlo result when the bulk density is not too large. The results of the solid fluid interracial tension for Lennard-Jones fluids demonstrate that different types of external potentials modulate the interfacial tension in different manners.
基金Supported by the North China Electric Power University Campus Foundation under Grant No 200911036.
文摘Classical density functional theory is used to study the associating Lennard Jones fluids in contact with spherical hard wall of different curvature radii.The interfacial properties including contact density and fluid-solid intcrfacial tension are investigated.The influences of associating energy,curvature of hard wall and the hulk density of fluids on these properties are analyzed in detail.The results may provide helpful clues to understand the interfacial properties of other complex fluids.
基金supported by the National Natural Science Foundation of China(Grant No.21503077)the Fundamental Research Fund for the Central Universities of China(Grant No.2016MS156)the Research Project from Hebei Education Department,China(Grant No.QN2018119)
文摘Based on statistical mechanics for classical fluids, the general expressions for the elastic moduli of inhomogeneous fluid are derived and expressed as functionals of density functions. Within the framework of classical density functional theory, the bulk modulus of confined argon in slit pore is calculated under different conditions. The effects of vapor pressure, temperature, and pore width on modulus are calculated and investigated. Obvious confinement-induced effect has been observed in the confined argon. In addition, the solvation pressure dependence of the bulk modulus is also investigated,and the results suggest that the Tait–Murnaghan equation is still valid for the confined fluids.
基金supported by the National Natural Science Foundation of China(Grant No.21503077)the Fundamental Research Fund for the Central Universities of China(Grant Nos.2016MS156 and 13MS105)+1 种基金the Technology Research and Development Program of Hebei Province,China(Grant No.13213704)the Program of Study Abroad for Young Teachers by Agricultural University of Hebei
文摘By using the statistical mechanics, the pressure tensor for the multi component fluid mixture is derived. With the help of the classical density functional theory, profiles of the pressure components are calculated, and the influence of the total volume fraction, ratio of volume fraction, and size asymmetry on the pressure are studied. In addition, our results show that for the mixture confined in the hard cavity, the pressure shows a discontinuity near the cavity wall. However, in the soft cavity condition, the discontinuity disappears.
基金Supported by the Natural Science Foundation of Hebei Province under Grant No 103002, and the Key Subject Construction Project of Hebei Provincial University.
文摘Two-particle cluster theory is applied to study the biaxial nematic phase formed by biaxial molecules interacting with a simplified model proposed by Sonnet et al. [Phys. Rev. E 67 (2003) 061701]. For the temperature dependences of the internal energy per particle and of the order parameters, the two-particle theory yields an improved result compared with mean field theory. Concerning the phase diagram, the two-particle theory gives the numerical result in qualitative agreement with the mean field theory.
基金Supported by the National Natural Science Foundation of China under Grant No.21503077the Fundamental Research Fund for the Central Universities of China under Grant No.2016MS156the Research Project from Hebei Education Department under Grant No.QN2018119
文摘Based on statistical mechanics for classical fluids,general expressions for hydrodynamic stress in inhomogeneous colloidal suspension are derived on a molecular level.The result is exactly an extension of the Iving-Kirkwood stress for atom fluids to colloidal suspensions where dynamic correlation emerges.It is found that besides the inter-particle distance,the obtained hydrodynamic stress depends closely on the velocity of the colloidal particles in the suspension,which is responsible for the appearance of the solvent-mediated hydrodynamic force.Compared to Brady’s stresslets for the bulk stress,our results are applicable to inhomogeneous suspension,where the inhomogeneity and anisotropy of the dynamic correlation should be taken into account.In the near-field regime where the packing fraction of colloidal particles is high,our results can reduce to those of Brady.Therefore,our results are applicable to the suspensions with low,moderate,or even high packing fraction of colloidal particles.