Oxygen evolution reaction(OER),a half reaction involved in electrochemical water splitting,CO2 reduction,and metal–air batteries,restricts the efficiency of these energy conversion systems due to sluggish reaction ki...Oxygen evolution reaction(OER),a half reaction involved in electrochemical water splitting,CO2 reduction,and metal–air batteries,restricts the efficiency of these energy conversion systems due to sluggish reaction kinetics[1,2].To accelerate OER,highly efficient electrocatalysts are required.However,large-scale applications of the normally used OER catalysts(i.e.RuO2 and IrO2)are hampered by their instability and low abundance.It is highly desirable to develop earth-abundant catalysts with low cost,high activity and long-term stability.Co(Ni,Fe)(oxy)hydroxides(Co(Ni)-(O)OH)have emerged as promising OER catalysts in recent years[3].展开更多
基金financially supported by the National Natural Science Foundation of China(51521001 and 51832003)the Fundamental Research Funds for the Central Universities(WUT:2019IB002)the Students Innovation and Entrepreneurship Training Program(2019-C-B1-25)。
文摘Oxygen evolution reaction(OER),a half reaction involved in electrochemical water splitting,CO2 reduction,and metal–air batteries,restricts the efficiency of these energy conversion systems due to sluggish reaction kinetics[1,2].To accelerate OER,highly efficient electrocatalysts are required.However,large-scale applications of the normally used OER catalysts(i.e.RuO2 and IrO2)are hampered by their instability and low abundance.It is highly desirable to develop earth-abundant catalysts with low cost,high activity and long-term stability.Co(Ni,Fe)(oxy)hydroxides(Co(Ni)-(O)OH)have emerged as promising OER catalysts in recent years[3].