In the medical computer tomography (CT) field, total variation (TV), which is the l1-norm of the discrete gradient transform (DGT), is widely used as regularization based on the compressive sensing (CS) theory...In the medical computer tomography (CT) field, total variation (TV), which is the l1-norm of the discrete gradient transform (DGT), is widely used as regularization based on the compressive sensing (CS) theory. To overcome the TV model's disadvantageous tendency of uniformly penalizing the image gradient and over smoothing the low-contrast structures, an iterative algorithm based on the l0-norm optimization of the DGT is proposed. In order to rise to the challenges introduced by the l0-norm DGT, the algorithm uses a pseudo-inverse transform of DGT and adapts an iterative hard thresholding (IHT) algorithm, whose convergence and effective efficiency have been theoretically proven. The simulation demonstrates our conclusions and indicates that the algorithm proposed in this paper can obviously improve the reconstruction quality.展开更多
In application of tomography imaging, limited-angle problem is a quite practical and important issue.In this paper, an iterative reprojection-reconstruction(IRR) algorithm using a modified Papoulis-Gerchberg(PG)iterat...In application of tomography imaging, limited-angle problem is a quite practical and important issue.In this paper, an iterative reprojection-reconstruction(IRR) algorithm using a modified Papoulis-Gerchberg(PG)iterative scheme is developed for reconstruction from limited-angle projections which contain noise. The proposed algorithm has two iterative update processes, one is the extrapolation of unknown data, and the other is the modification of the known noisy observation data. And the algorithm introduces scaling factors to control the two processes, respectively. The convergence of the algorithm is guaranteed, and the method of choosing the scaling factors is given with energy constraints. The simulation result demonstrates our conclusions and indicates that the algorithm proposed in this paper can obviously improve the reconstruction quality.展开更多
文摘In the medical computer tomography (CT) field, total variation (TV), which is the l1-norm of the discrete gradient transform (DGT), is widely used as regularization based on the compressive sensing (CS) theory. To overcome the TV model's disadvantageous tendency of uniformly penalizing the image gradient and over smoothing the low-contrast structures, an iterative algorithm based on the l0-norm optimization of the DGT is proposed. In order to rise to the challenges introduced by the l0-norm DGT, the algorithm uses a pseudo-inverse transform of DGT and adapts an iterative hard thresholding (IHT) algorithm, whose convergence and effective efficiency have been theoretically proven. The simulation demonstrates our conclusions and indicates that the algorithm proposed in this paper can obviously improve the reconstruction quality.
文摘In application of tomography imaging, limited-angle problem is a quite practical and important issue.In this paper, an iterative reprojection-reconstruction(IRR) algorithm using a modified Papoulis-Gerchberg(PG)iterative scheme is developed for reconstruction from limited-angle projections which contain noise. The proposed algorithm has two iterative update processes, one is the extrapolation of unknown data, and the other is the modification of the known noisy observation data. And the algorithm introduces scaling factors to control the two processes, respectively. The convergence of the algorithm is guaranteed, and the method of choosing the scaling factors is given with energy constraints. The simulation result demonstrates our conclusions and indicates that the algorithm proposed in this paper can obviously improve the reconstruction quality.