高精度时间频率的产生和超高精度时频信号的传递是现代物理学、天文学和计量科学的基础。空间原子钟组计划(Atomic Clock Ensemble in Space,ACES)是由欧洲空间局实施的基于国际空间站(International Space Station,ISS)微重力环境下的...高精度时间频率的产生和超高精度时频信号的传递是现代物理学、天文学和计量科学的基础。空间原子钟组计划(Atomic Clock Ensemble in Space,ACES)是由欧洲空间局实施的基于国际空间站(International Space Station,ISS)微重力环境下的新型空间微波原子钟实验验证项目。概要介绍ACES项目基本情况,重点介绍ACES项目的主要科学和技术目标,围绕科学目标而形成的ACES组成结构,并梳理涉及的关键技术,特别介绍了ACES将应用的超高精度时频传递技术,为我国自主研究并实现相关空间时间频率系统及其应用提供参考。最后简述了我国正在建设的空间站时频系统主要情况和实施计划。展开更多
We demonstrate a photon counting laser ranging experiment with a four-channel single-photon detector(SPD). The multi-channel SPD improve the counting rate more than 4×10~7 cps, which makes possible for the distan...We demonstrate a photon counting laser ranging experiment with a four-channel single-photon detector(SPD). The multi-channel SPD improve the counting rate more than 4×10~7 cps, which makes possible for the distance measurement performed even in daylight. However, the time-correlated single-photon counting(TCSPC) technique cannot distill the signal easily while the fast moving targets are submersed in the strong background. We propose a dynamic TCSPC method for fast moving targets measurement by varying coincidence window in real time. In the experiment, we prove that targets with velocity of 5 km/s can be detected according to the method, while the echo rate is 20% with the background counts of more than 1.2×10~7 cps.展开更多
文摘高精度时间频率的产生和超高精度时频信号的传递是现代物理学、天文学和计量科学的基础。空间原子钟组计划(Atomic Clock Ensemble in Space,ACES)是由欧洲空间局实施的基于国际空间站(International Space Station,ISS)微重力环境下的新型空间微波原子钟实验验证项目。概要介绍ACES项目基本情况,重点介绍ACES项目的主要科学和技术目标,围绕科学目标而形成的ACES组成结构,并梳理涉及的关键技术,特别介绍了ACES将应用的超高精度时频传递技术,为我国自主研究并实现相关空间时间频率系统及其应用提供参考。最后简述了我国正在建设的空间站时频系统主要情况和实施计划。
基金supported by the National Natural Science Foundation of China(No.11374105)
文摘We demonstrate a photon counting laser ranging experiment with a four-channel single-photon detector(SPD). The multi-channel SPD improve the counting rate more than 4×10~7 cps, which makes possible for the distance measurement performed even in daylight. However, the time-correlated single-photon counting(TCSPC) technique cannot distill the signal easily while the fast moving targets are submersed in the strong background. We propose a dynamic TCSPC method for fast moving targets measurement by varying coincidence window in real time. In the experiment, we prove that targets with velocity of 5 km/s can be detected according to the method, while the echo rate is 20% with the background counts of more than 1.2×10~7 cps.