Relationships between fluorescence parameters and membrane lipid peroxidation in leaves of indica and japonica rice (Oryza sativa L.) during later growth stage were studied under chilling temperature and strong light ...Relationships between fluorescence parameters and membrane lipid peroxidation in leaves of indica and japonica rice (Oryza sativa L.) during later growth stage were studied under chilling temperature and strong light stress conditions. Results showed that D1 protein contents of PSⅡ in photosynthetic apparatus dropped, the generation of antheraxanthin (A) and zeaxanthin (Z) of xanthophyll cycle were inhibited partly, PSⅡ photochemical efficiency (F v/F m)and non-photochemical quenching (q N) were also decreased obviously. In addition, endogenous active oxygen scavenger—superoxide dismutase (SOD) reduced, superoxide anion radical (O -· 2) and malondialdehyde (MDA) accumulated, as a result, photooxidation of leaves occurred under chilling temperature and strong light stress conditions. Obvious differences in the changes of the above mentioned physiological parameters between indica and japonica rice were observed. Experiments in leaves treated with inhibitors under chilling temperature and strong light conditions showed that indica rice was more sensitive to chilling temperature with strong light and subjected to photooxidation more than japonica rice. Notable positive correlation between D1 protein contents and F v/F m or (A+Z)/(A+Z+V), and a marked negative correlation between F v/F m and MDA contents were obtained by regression analysis in indica and japonica rice during chilling temperature and strong light conditions. According to the facts mentioned above, it was inferred that PSⅡ photochemical efficiency(F v/F m) was the key index to forecast for the prediction of photooxidation under stress circumstances and the physiological basis were the synthetic capacity of D1 protein and the protection of xanthophyll cycle.展开更多
Physiological indices related to the efficiency (F-v/F-m) of light energy conversion in PS II and the peroxidation of membrane lipid were measured in leaves of Oryza sativa L. sp. indica rice cv. 'Shanyou 63' ...Physiological indices related to the efficiency (F-v/F-m) of light energy conversion in PS II and the peroxidation of membrane lipid were measured in leaves of Oryza sativa L. sp. indica rice cv. 'Shanyou 63' and sp. japonica rice cv. '9516'' under different temperatures and fight intensities for 4 days. No changes in F-v/F-m and membrane lipid peroxidation product (MDA) were observed, so neither photoinhibition nor photooxidation happened in both rice cultivars under moderate temperature and medium light intensity. However, F-v/F-m dropped obviously with no change in MDA contents, and photoinhibition appeared in indica rice cv. 'Shanyou 63' under medium temperature and strong light intensity. Furthermore, both photoinhibition and photooxidation were observed in two rice cultivars under chilling temperature and strong light intensity. Experiments with inhibitors under chilling temperature and strong light intensity showed that indica rice had a decrease in DI protein content and SOD activity, and the extent of inhibition of xanthophyll. cycle and nonphotochemical quenching (qN) was larger, and a higher level of MDA was observed. The photoinhibition and photooxidation in indica rice were more distinct as compared with japonica rice. The authors suggested that PS II light energy conversion efficiency (F-v/F-m) and membrane lipid peroxidation were the key indices for the detection of photooxidation.展开更多
To explore the differences of sensitivities to chilling and strong light in indica and japonica rice (Oryza sativa L), the changes in unsaturation of thylakoid membrane lipids and xanthophyll cycle were studied under ...To explore the differences of sensitivities to chilling and strong light in indica and japonica rice (Oryza sativa L), the changes in unsaturation of thylakoid membrane lipids and xanthophyll cycle were studied under chilling condition and strong light. The contents of unsaturated fatty acids of thylakoid membrane lipids decreased and that of the saturated ones increased with the time of chilling and strong light treatment, resulting in the reduction of the index of unsaturation of fatty acids (IUFA). The activity of violaxanthin deepoxidase (VDE), a key enzyme of xanthophyll cycle, also reduced. The content of violaxanthin (V) increased, and the contents of antheraxanthin (A) and zeaxanthin M decreased, the ratio of (A+Z)/ (A+Z+V) decreased correspondingly. Arrhenius analysis showed that VDE was sensitive to both chilling and unsaturation level of thylakoid membrane lipids. Correlation analysis showed that there was distinctly positive relationships between IUFA of thylakoid membrane lipids and the activity of VDE, Fv/Fm, and D, protein content. Lower IUFA values, less fluidity and stability of thylakoid membrane lipids, lower VDE activity and (A+Z)/(A+Z+V) ratio were found in indica rice cv. Shanyou 63 than in japonica rice cv. 9516 under chilling and strong light.展开更多
文摘Relationships between fluorescence parameters and membrane lipid peroxidation in leaves of indica and japonica rice (Oryza sativa L.) during later growth stage were studied under chilling temperature and strong light stress conditions. Results showed that D1 protein contents of PSⅡ in photosynthetic apparatus dropped, the generation of antheraxanthin (A) and zeaxanthin (Z) of xanthophyll cycle were inhibited partly, PSⅡ photochemical efficiency (F v/F m)and non-photochemical quenching (q N) were also decreased obviously. In addition, endogenous active oxygen scavenger—superoxide dismutase (SOD) reduced, superoxide anion radical (O -· 2) and malondialdehyde (MDA) accumulated, as a result, photooxidation of leaves occurred under chilling temperature and strong light stress conditions. Obvious differences in the changes of the above mentioned physiological parameters between indica and japonica rice were observed. Experiments in leaves treated with inhibitors under chilling temperature and strong light conditions showed that indica rice was more sensitive to chilling temperature with strong light and subjected to photooxidation more than japonica rice. Notable positive correlation between D1 protein contents and F v/F m or (A+Z)/(A+Z+V), and a marked negative correlation between F v/F m and MDA contents were obtained by regression analysis in indica and japonica rice during chilling temperature and strong light conditions. According to the facts mentioned above, it was inferred that PSⅡ photochemical efficiency(F v/F m) was the key index to forecast for the prediction of photooxidation under stress circumstances and the physiological basis were the synthetic capacity of D1 protein and the protection of xanthophyll cycle.
文摘Physiological indices related to the efficiency (F-v/F-m) of light energy conversion in PS II and the peroxidation of membrane lipid were measured in leaves of Oryza sativa L. sp. indica rice cv. 'Shanyou 63' and sp. japonica rice cv. '9516'' under different temperatures and fight intensities for 4 days. No changes in F-v/F-m and membrane lipid peroxidation product (MDA) were observed, so neither photoinhibition nor photooxidation happened in both rice cultivars under moderate temperature and medium light intensity. However, F-v/F-m dropped obviously with no change in MDA contents, and photoinhibition appeared in indica rice cv. 'Shanyou 63' under medium temperature and strong light intensity. Furthermore, both photoinhibition and photooxidation were observed in two rice cultivars under chilling temperature and strong light intensity. Experiments with inhibitors under chilling temperature and strong light intensity showed that indica rice had a decrease in DI protein content and SOD activity, and the extent of inhibition of xanthophyll. cycle and nonphotochemical quenching (qN) was larger, and a higher level of MDA was observed. The photoinhibition and photooxidation in indica rice were more distinct as compared with japonica rice. The authors suggested that PS II light energy conversion efficiency (F-v/F-m) and membrane lipid peroxidation were the key indices for the detection of photooxidation.
文摘To explore the differences of sensitivities to chilling and strong light in indica and japonica rice (Oryza sativa L), the changes in unsaturation of thylakoid membrane lipids and xanthophyll cycle were studied under chilling condition and strong light. The contents of unsaturated fatty acids of thylakoid membrane lipids decreased and that of the saturated ones increased with the time of chilling and strong light treatment, resulting in the reduction of the index of unsaturation of fatty acids (IUFA). The activity of violaxanthin deepoxidase (VDE), a key enzyme of xanthophyll cycle, also reduced. The content of violaxanthin (V) increased, and the contents of antheraxanthin (A) and zeaxanthin M decreased, the ratio of (A+Z)/ (A+Z+V) decreased correspondingly. Arrhenius analysis showed that VDE was sensitive to both chilling and unsaturation level of thylakoid membrane lipids. Correlation analysis showed that there was distinctly positive relationships between IUFA of thylakoid membrane lipids and the activity of VDE, Fv/Fm, and D, protein content. Lower IUFA values, less fluidity and stability of thylakoid membrane lipids, lower VDE activity and (A+Z)/(A+Z+V) ratio were found in indica rice cv. Shanyou 63 than in japonica rice cv. 9516 under chilling and strong light.