采用原子力显微镜研究了PAEK/双马来酰亚胺共混体系的分相机理和层状体系固化后的相形态结构。通过AFM可以清楚地观察到,PAEK含量较低时,分相机理是成核-增长机理(Nuc leation and G rowth m echan ism,简称NG),形成典型的海岛分相结构...采用原子力显微镜研究了PAEK/双马来酰亚胺共混体系的分相机理和层状体系固化后的相形态结构。通过AFM可以清楚地观察到,PAEK含量较低时,分相机理是成核-增长机理(Nuc leation and G rowth m echan ism,简称NG),形成典型的海岛分相结构;随着PAEK含量的增加,分相机理变成旋节线相分离机理(Sp inodal Decomposition,简称SD),形成了典型的双连续结构,随着PAEK的含量进一步增大,形成典型的相反转结构,SEM观察证实了AFM观察的相分离机理。同时共混物的冲击强度在PAEK含量为20phr时出现了一个峰值,此时共混体系的冲击强度提高了近2倍。通过SEM研究PAEK/双马来酰亚胺层状体系,发现PAEK膜与BM I相互接触的区域,由于相互扩散出现了类似共混体系的相形态结构,其中由于BM I的扩散能力较PAEK较强,发现在PAEK相出现大量BM I颗粒,这种结构对于提高双马来酰亚胺树脂的韧性非常有利,通过研究PAEK/双马来酰亚胺共混体系的分相机理及其层状结构的相形态结构,从而为PAEK膜"离位"增韧BM I树脂基复合材料打下基础。展开更多
文摘采用原子力显微镜研究了PAEK/双马来酰亚胺共混体系的分相机理和层状体系固化后的相形态结构。通过AFM可以清楚地观察到,PAEK含量较低时,分相机理是成核-增长机理(Nuc leation and G rowth m echan ism,简称NG),形成典型的海岛分相结构;随着PAEK含量的增加,分相机理变成旋节线相分离机理(Sp inodal Decomposition,简称SD),形成了典型的双连续结构,随着PAEK的含量进一步增大,形成典型的相反转结构,SEM观察证实了AFM观察的相分离机理。同时共混物的冲击强度在PAEK含量为20phr时出现了一个峰值,此时共混体系的冲击强度提高了近2倍。通过SEM研究PAEK/双马来酰亚胺层状体系,发现PAEK膜与BM I相互接触的区域,由于相互扩散出现了类似共混体系的相形态结构,其中由于BM I的扩散能力较PAEK较强,发现在PAEK相出现大量BM I颗粒,这种结构对于提高双马来酰亚胺树脂的韧性非常有利,通过研究PAEK/双马来酰亚胺共混体系的分相机理及其层状结构的相形态结构,从而为PAEK膜"离位"增韧BM I树脂基复合材料打下基础。