MoS_2二维材料由于其本身就具有直接带隙且带隙不为零,具有优于石墨烯的能带结构,是良好的半导体材料,在电学、磁学、及未来电子器件等方面都有良好的性质和应用前景。利用第一性原理方法,通过替位掺杂的方式,研究了不同浓度F掺杂单层Mo...MoS_2二维材料由于其本身就具有直接带隙且带隙不为零,具有优于石墨烯的能带结构,是良好的半导体材料,在电学、磁学、及未来电子器件等方面都有良好的性质和应用前景。利用第一性原理方法,通过替位掺杂的方式,研究了不同浓度F掺杂单层MoS_2的能带结构和各种态密度图,并与本征单层MoS_2及文献中的掺Cl、掺O结果做了对比,分析了各自的电子结构、导电性和磁性。结果发现:掺F后单层MoS_2由直接带隙变成间接带隙,单层MoS_2的禁带宽度从本征的1.718e V减小到1.301 e V,且随着F掺杂浓度的增加,带隙更加变窄,体系的导电性更加增强。带隙的调节程度大于文献中掺Cl的效果而小于掺O的效果。磁性方面,本征的MoS_2无磁性,发现掺F后出现了一定磁性,且随着F掺杂浓度的增加其磁性增加。这些结果有利于对MoS_2优化改性和调控从而在微电子器件和半导体自旋电子学方面的应用。展开更多
文摘MoS_2二维材料由于其本身就具有直接带隙且带隙不为零,具有优于石墨烯的能带结构,是良好的半导体材料,在电学、磁学、及未来电子器件等方面都有良好的性质和应用前景。利用第一性原理方法,通过替位掺杂的方式,研究了不同浓度F掺杂单层MoS_2的能带结构和各种态密度图,并与本征单层MoS_2及文献中的掺Cl、掺O结果做了对比,分析了各自的电子结构、导电性和磁性。结果发现:掺F后单层MoS_2由直接带隙变成间接带隙,单层MoS_2的禁带宽度从本征的1.718e V减小到1.301 e V,且随着F掺杂浓度的增加,带隙更加变窄,体系的导电性更加增强。带隙的调节程度大于文献中掺Cl的效果而小于掺O的效果。磁性方面,本征的MoS_2无磁性,发现掺F后出现了一定磁性,且随着F掺杂浓度的增加其磁性增加。这些结果有利于对MoS_2优化改性和调控从而在微电子器件和半导体自旋电子学方面的应用。