海洋温度数据在全球海洋观测和气候研究中发挥着关键作用,质量控制对于确保这些数据的可靠性十分关键,然而,目前在大数据集上的异常数据召回率尚不理想。文章基于Argo温度数据,提出一种基于规则集和多层感知机(rule set and multilayer ...海洋温度数据在全球海洋观测和气候研究中发挥着关键作用,质量控制对于确保这些数据的可靠性十分关键,然而,目前在大数据集上的异常数据召回率尚不理想。文章基于Argo温度数据,提出一种基于规则集和多层感知机(rule set and multilayer perceptron,RS-MLP)的质量控制方法。首先对13种机器学习模型进行对比分析,从中筛选出最优机器学习模型,然后设计了由6种基于规则的质量控制检查模块组成的规则集,最后集成规则集和最优机器学习模型构建出RS-MLP方法,并以南海区域的Argo数据为例评估方法性能。研究结果表明:RS-MLP在351746条温度数据的测试集中真阳性率(true positive rate,TPR)、真阴性率(true negative rate,TNR)和接受者操作特性(receiver operating characteristic,ROC)曲线下面积(area under the curve,AUC)依次能达到93%、96%和95%,并在不同深度层次上的异常数据召回率比较稳定,具有优秀的质量控制性能。展开更多
文摘海洋温度数据在全球海洋观测和气候研究中发挥着关键作用,质量控制对于确保这些数据的可靠性十分关键,然而,目前在大数据集上的异常数据召回率尚不理想。文章基于Argo温度数据,提出一种基于规则集和多层感知机(rule set and multilayer perceptron,RS-MLP)的质量控制方法。首先对13种机器学习模型进行对比分析,从中筛选出最优机器学习模型,然后设计了由6种基于规则的质量控制检查模块组成的规则集,最后集成规则集和最优机器学习模型构建出RS-MLP方法,并以南海区域的Argo数据为例评估方法性能。研究结果表明:RS-MLP在351746条温度数据的测试集中真阳性率(true positive rate,TPR)、真阴性率(true negative rate,TNR)和接受者操作特性(receiver operating characteristic,ROC)曲线下面积(area under the curve,AUC)依次能达到93%、96%和95%,并在不同深度层次上的异常数据召回率比较稳定,具有优秀的质量控制性能。
文摘海表面温度(sea surface temperature, SST)是海洋与大气之间相互作用的关键因素,海温控制着全球大气和海洋生态系统的变化。准确预测海表面温度的演变对治理全球大气系统和海洋生态系统都具有重要的意义。为了对SST数据的空间自相关性准确建模,本文提出了基于全局跨尺度时空注意力的深度神经网络海表面温度预测模型(deep neural network based on global cross-scale spatiotemporal attention, GCSA-DNN)。模型分为3个部分,从长时序数据中提取时序依赖特征的时序建模模块,从SST序列均值中提取空间分布规律特征的多尺度局部空间建模模块和基于全局跨尺度的时空注意力融合模块,实现每个网格点对全局自相关性的建模。本研究选择空间分布规律不同的东海和南海海域数据,对1981年9月1日至2022年4月7日美国国家海洋和大气管理局(nationaloceanicand atmospheric administration,NOAA)的数据进行了预测分析,共14829条数据,其中1981年9月1日至2021年8月31日的70%数据用于训练,30%用于验证,2021年9月1日至2022年4月7日的数据用于测试。结果表明,在不同的实验条件下该模型可以准确捕捉SST数据在时空过程中的演变规律,在东海和南海SST数据集上其准确度相较于卷积长短时记忆神经网络(convolutional long short-term memory, ConvLSTM)分别提高了14.07%和14.18%,提升了SST预测的准确度。