Er3+/Yb3+ co-doped Li3Ba2Gd3(MoO4)8 phosphors were synthesized by conven- tional solid state reaction method, and their structure and spectral properties were investigated. The diffuse reflectance spectra showed t...Er3+/Yb3+ co-doped Li3Ba2Gd3(MoO4)8 phosphors were synthesized by conven- tional solid state reaction method, and their structure and spectral properties were investigated. The diffuse reflectance spectra showed that the 4I15/2→4I11/2 transition of Er3+ and the 2F7/2→2F5/2 transition of Yb3+ ions were highly overlapped. Under the excitation of 980 nm, three up-conver- sion (UC) luminescence bands around 530, 555 and 660 nm were observed, corresponding to the 2H11/2→ 4I15/2, 4S3/2 → 4I15/2 and 4F9/2-→4I15/2 transitions of Er3+ ions, respectively. The effects of the concentration and pumping power on the UC intensities of Li3Ba2Gd3(MoO4)8:Er3+/yb3+ phosphors were investigated, and the possible UC mechanism was proposed based on the results.展开更多
基金supported by the Natural Science Foundation of Shandong Province(ZR2014JL029,BS2015CL012,ZR2015BM005)
文摘Er3+/Yb3+ co-doped Li3Ba2Gd3(MoO4)8 phosphors were synthesized by conven- tional solid state reaction method, and their structure and spectral properties were investigated. The diffuse reflectance spectra showed that the 4I15/2→4I11/2 transition of Er3+ and the 2F7/2→2F5/2 transition of Yb3+ ions were highly overlapped. Under the excitation of 980 nm, three up-conver- sion (UC) luminescence bands around 530, 555 and 660 nm were observed, corresponding to the 2H11/2→ 4I15/2, 4S3/2 → 4I15/2 and 4F9/2-→4I15/2 transitions of Er3+ ions, respectively. The effects of the concentration and pumping power on the UC intensities of Li3Ba2Gd3(MoO4)8:Er3+/yb3+ phosphors were investigated, and the possible UC mechanism was proposed based on the results.