X-ray sources with tunable energy spectra have a wide range of applications in different scenarios due to their different penetration depths.However,existing x-ray sources face difficulties in terms of energy regulati...X-ray sources with tunable energy spectra have a wide range of applications in different scenarios due to their different penetration depths.However,existing x-ray sources face difficulties in terms of energy regulation.In this paper,we present a scheme for tuning the energy spectrum of a betatron x-ray generated from a relativistic electron bunch oscillating in a plasma wakefield.The center energy of the x-ray source can be tuned from several keV to several hundred keV by changing the plasma density,thereby extending the control range by an order of magnitude.At different central energies,the brightness of the betatron radiation is in the range of 3.7×10^(22)to 5.5×10^(22)photons/(0.1%BW·s·mm^(2)·mrad^(2))and the photon divergence angle is about 2 mrad.This high-brightness,energy-controlled betatron source could pave the way to a wide range of applications requiring photons of specific energy,such as phase-contrast imaging in medicine,non-destructive testing and material analysis in industry,and imaging in nuclear physics.展开更多
An improved indirect scheme for laser positron generation is proposed. The positron yields in high-ZZ metal targets irradiated by laser produced electrons from near-critical density plasmas and underdense plasma are i...An improved indirect scheme for laser positron generation is proposed. The positron yields in high-ZZ metal targets irradiated by laser produced electrons from near-critical density plasmas and underdense plasma are investigated numerically. It is found that the positron yield is mainly affected by the number of electrons of energies up to several hundreds of MeV. Using near-critical density targets for electron acceleration, the number of high energy electrons can be increased dramatically. Through start-to-end simulations, it is shown that up to 6.78×10106.78×1010 positrons can be generated with state-of-the-art Joule-class femtosecond laser systems.展开更多
A prototype of a laser driven proton accelerator is built at Peking University. Protons exceeding IOMeV are accelerated from micrometer-thick aluminum targets irradiated by tightly focused laser pulse with 1.8 J energ...A prototype of a laser driven proton accelerator is built at Peking University. Protons exceeding IOMeV are accelerated from micrometer-thick aluminum targets irradiated by tightly focused laser pulse with 1.8 J energy and 30fs duration. The beam energy spectrum and charge distribution are measured by a Thomson parabola spectrometer and radiochromic fihn stacks. The sensitivity of proton cut-off energy to the focusing of the laser beam, the pulse duration, and the foil thickness are systematically investigated in the experiments. Stable proton beams have been produced with an optimized parameter set, providing a cornerstone for the future applications of laser accelerated protons.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11921006 and 12175058)the Beijing Distinguished Young Scientist Program and National Grand Instrument Project (Grant No.SQ2019YFF01014400)+1 种基金the Beijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park (Grant No.Z231100006023003)in part funded by United Kingdom EPSRC (Grant Nos.EP/G054950/1,EP/G056803/1,EP/G055165/1,and EP/M022463/1)。
文摘X-ray sources with tunable energy spectra have a wide range of applications in different scenarios due to their different penetration depths.However,existing x-ray sources face difficulties in terms of energy regulation.In this paper,we present a scheme for tuning the energy spectrum of a betatron x-ray generated from a relativistic electron bunch oscillating in a plasma wakefield.The center energy of the x-ray source can be tuned from several keV to several hundred keV by changing the plasma density,thereby extending the control range by an order of magnitude.At different central energies,the brightness of the betatron radiation is in the range of 3.7×10^(22)to 5.5×10^(22)photons/(0.1%BW·s·mm^(2)·mrad^(2))and the photon divergence angle is about 2 mrad.This high-brightness,energy-controlled betatron source could pave the way to a wide range of applications requiring photons of specific energy,such as phase-contrast imaging in medicine,non-destructive testing and material analysis in industry,and imaging in nuclear physics.
基金Supported by the National Basic Research Program of China under Grant No 2013CBA01502the National Natural Science Foundation of China under Grant Nos 11575011 and 11535001+1 种基金the National Grand Instrument Project under Grant No2012YQ030142the UK EPSRC under Grant Nos EP/G054950/1,EP/G056803/1,EP/G055165/1 and EP/M022463/1
文摘An improved indirect scheme for laser positron generation is proposed. The positron yields in high-ZZ metal targets irradiated by laser produced electrons from near-critical density plasmas and underdense plasma are investigated numerically. It is found that the positron yield is mainly affected by the number of electrons of energies up to several hundreds of MeV. Using near-critical density targets for electron acceleration, the number of high energy electrons can be increased dramatically. Through start-to-end simulations, it is shown that up to 6.78×10106.78×1010 positrons can be generated with state-of-the-art Joule-class femtosecond laser systems.
基金Supported by the National Basic Research Program of China under Grant No 2013CBA01502the National Natural Science Foundation of China under Grant Nos 11475010,11575011 and 11535001the National Grand Instrument Project under Grant No 2012YQ030142
文摘A prototype of a laser driven proton accelerator is built at Peking University. Protons exceeding IOMeV are accelerated from micrometer-thick aluminum targets irradiated by tightly focused laser pulse with 1.8 J energy and 30fs duration. The beam energy spectrum and charge distribution are measured by a Thomson parabola spectrometer and radiochromic fihn stacks. The sensitivity of proton cut-off energy to the focusing of the laser beam, the pulse duration, and the foil thickness are systematically investigated in the experiments. Stable proton beams have been produced with an optimized parameter set, providing a cornerstone for the future applications of laser accelerated protons.