The problem of detecting community structures of a social network has been extensively studied over recent years, but most existing methods solely rely on the network structure and neglect the context information of t...The problem of detecting community structures of a social network has been extensively studied over recent years, but most existing methods solely rely on the network structure and neglect the context information of the social relations. The main reason is that a context-rich network offers too much flexibility and complexity for automatic or manual modulation of the multifaceted context in the analysis process. We address the challenging problem of incorporating context information into the community analysis with a novel visual analysis mechanism. Our approach consists of two stages: interactive discovery of salient context, and iterative context-guided community detection. Central to the analysis process is a context relevance model (CRM) that visually characterizes the influence of a given set of contexts on the variation of the detected communities, and discloses the community structure in specific context configurations. The extracted relevance is used to drive an iterative visual reasoning process, in which the community structures are progressively discovered. We introduce a suite of visual representations to encode the community structures, the context as well as the CRM. In particular, we propose an enhanced parallel coordinates representation to depict the context and community structures, which allows for interactive data exploration and community investigation. Case studies on several datasets demonstrate the efficiency and accuracy of our approach.展开更多
Direct volume rendering (DVR) is a powerful visualization technique which allows users to effectively explore and study volumetric datasets. Different transparency settings can be flexibly assigned to different stru...Direct volume rendering (DVR) is a powerful visualization technique which allows users to effectively explore and study volumetric datasets. Different transparency settings can be flexibly assigned to different structures such that some valuable information can be revealed in direct volume rendered images (DVRIs). However, end-users often feel that some risks are always associated with DVR because they do not know whether any important information is missing from the transparent regions of DVRIs. In this paper, we investigate how to semi-automatically generate a set of DVRIs and also an animation which can reveal information missed in the original DVRIs and meanwhile satisfy some image quality criteria such as coherence. A complete framework is developed to tackle various problems related to the generation and quality evaluation of visibility-aware DVRIs and animations. Our technique can reduce the risk of using direct volume rendering and thus boost the confidence of users in volume rendering systems.展开更多
基金supported by the National Natural Science Foundation of China under Grant Nos. 61232012, 61202279the National High Technology Research and Development 863 Program of China under Grant No. 2012AA12090+1 种基金the Natural Science Foundation of Zhejiang Province of China under Grant No. LR13F020001the Doctoral Fund of Ministry of Education of China under Grant No. 20120101110134
文摘The problem of detecting community structures of a social network has been extensively studied over recent years, but most existing methods solely rely on the network structure and neglect the context information of the social relations. The main reason is that a context-rich network offers too much flexibility and complexity for automatic or manual modulation of the multifaceted context in the analysis process. We address the challenging problem of incorporating context information into the community analysis with a novel visual analysis mechanism. Our approach consists of two stages: interactive discovery of salient context, and iterative context-guided community detection. Central to the analysis process is a context relevance model (CRM) that visually characterizes the influence of a given set of contexts on the variation of the detected communities, and discloses the community structure in specific context configurations. The extracted relevance is used to drive an iterative visual reasoning process, in which the community structures are progressively discovered. We introduce a suite of visual representations to encode the community structures, the context as well as the CRM. In particular, we propose an enhanced parallel coordinates representation to depict the context and community structures, which allows for interactive data exploration and community investigation. Case studies on several datasets demonstrate the efficiency and accuracy of our approach.
基金supported in part by Hong Kong RGC CERG under Grant No. 618705
文摘Direct volume rendering (DVR) is a powerful visualization technique which allows users to effectively explore and study volumetric datasets. Different transparency settings can be flexibly assigned to different structures such that some valuable information can be revealed in direct volume rendered images (DVRIs). However, end-users often feel that some risks are always associated with DVR because they do not know whether any important information is missing from the transparent regions of DVRIs. In this paper, we investigate how to semi-automatically generate a set of DVRIs and also an animation which can reveal information missed in the original DVRIs and meanwhile satisfy some image quality criteria such as coherence. A complete framework is developed to tackle various problems related to the generation and quality evaluation of visibility-aware DVRIs and animations. Our technique can reduce the risk of using direct volume rendering and thus boost the confidence of users in volume rendering systems.