微生物细胞的傅里叶变换近红外光谱(Fourier transform near infrared spectroscopy,FT-NIR)反映了细胞成分的分子振动信息,具有的高度特异性,为寻求一种基于FT-NIR的微生物快速鉴定方法提供了可能。文章通过采集1株酵母和5株细菌标准...微生物细胞的傅里叶变换近红外光谱(Fourier transform near infrared spectroscopy,FT-NIR)反映了细胞成分的分子振动信息,具有的高度特异性,为寻求一种基于FT-NIR的微生物快速鉴定方法提供了可能。文章通过采集1株酵母和5株细菌标准菌株的近红外漫反射光谱,采用主成分分析法对光谱数据进行了分析,构建了基于FT-NIR的微生物快速鉴定模型。分析结果表明:①光谱鉴别指数Dy1y2值范围为1.61±1.05~10.97±6.65,重现性良好;②建立的基于线性判别分析模型的鉴定准确率为100%,基于人工神经网络模型的预测结果平均相对误差为5.75%,预测准确率高。研究结果证实该方法可以实现基于FT-NIR结合多元数学统计方法的微生物快速鉴定,并具有广阔的产业应用前景。展开更多
文摘微生物细胞的傅里叶变换近红外光谱(Fourier transform near infrared spectroscopy,FT-NIR)反映了细胞成分的分子振动信息,具有的高度特异性,为寻求一种基于FT-NIR的微生物快速鉴定方法提供了可能。文章通过采集1株酵母和5株细菌标准菌株的近红外漫反射光谱,采用主成分分析法对光谱数据进行了分析,构建了基于FT-NIR的微生物快速鉴定模型。分析结果表明:①光谱鉴别指数Dy1y2值范围为1.61±1.05~10.97±6.65,重现性良好;②建立的基于线性判别分析模型的鉴定准确率为100%,基于人工神经网络模型的预测结果平均相对误差为5.75%,预测准确率高。研究结果证实该方法可以实现基于FT-NIR结合多元数学统计方法的微生物快速鉴定,并具有广阔的产业应用前景。