针对由于血管类间具有强相似性造成的动静脉错误分类问题,提出了一种新的融合上下文信息的多尺度视网膜动静脉分类网络(multi-scale retinal artery and vein classification network,MCFNet),该网络使用多尺度特征(multi-scale feature...针对由于血管类间具有强相似性造成的动静脉错误分类问题,提出了一种新的融合上下文信息的多尺度视网膜动静脉分类网络(multi-scale retinal artery and vein classification network,MCFNet),该网络使用多尺度特征(multi-scale feature,MSF)提取模块及高效的全局上下文信息融合(efficient global contextual information aggregation,EGCA)模块结合U型分割网络进行动静脉分类,抑制了倾向于背景的特征并增强了血管的边缘、交点和末端特征,解决了段内动静脉错误分类问题。此外,在U型网络的解码器部分加入3层深度监督,使浅层信息得到充分训练,避免梯度消失,优化训练过程。在2个公开的眼底图像数据集(DRIVE-AV,LES-AV)上,与3种现有网络进行方法对比,该模型的F1评分分别提高了2.86、1.92、0.81个百分点,灵敏度分别提高了4.27、2.43、1.21个百分点,结果表明所提出的模型能够很好地解决动静脉分类错误的问题。展开更多
二维数字图像相关(two-dimensional digital image correlation,2D-DIC)在测量过程中不可避免地会出现相机光轴与测量表面非垂直,由此产生的离面位移而将导致较大的测量误差,同时在视场受限的环境中难以通过单台相机完成大范围的变形测...二维数字图像相关(two-dimensional digital image correlation,2D-DIC)在测量过程中不可避免地会出现相机光轴与测量表面非垂直,由此产生的离面位移而将导致较大的测量误差,同时在视场受限的环境中难以通过单台相机完成大范围的变形测量。有鉴于此,该文开发了基于双反射镜的2D-DIC变形测量系统,使用双反射镜成像缓解离面运动对2D-DIC的影响,通过可移动相机实现小视场下的图像采集,提出基于频域移位的高精度图像拼接方法,并改进了融合函数,最终获得试样的高分辨率图像。单轴拉伸实验结果表明,轴向应变的平均相对误差相比传统2D-DIC方法降低12.82%,测量分辨率提高约34.92%,验证了测量系统的可行性和有效性。展开更多
文摘针对由于血管类间具有强相似性造成的动静脉错误分类问题,提出了一种新的融合上下文信息的多尺度视网膜动静脉分类网络(multi-scale retinal artery and vein classification network,MCFNet),该网络使用多尺度特征(multi-scale feature,MSF)提取模块及高效的全局上下文信息融合(efficient global contextual information aggregation,EGCA)模块结合U型分割网络进行动静脉分类,抑制了倾向于背景的特征并增强了血管的边缘、交点和末端特征,解决了段内动静脉错误分类问题。此外,在U型网络的解码器部分加入3层深度监督,使浅层信息得到充分训练,避免梯度消失,优化训练过程。在2个公开的眼底图像数据集(DRIVE-AV,LES-AV)上,与3种现有网络进行方法对比,该模型的F1评分分别提高了2.86、1.92、0.81个百分点,灵敏度分别提高了4.27、2.43、1.21个百分点,结果表明所提出的模型能够很好地解决动静脉分类错误的问题。
文摘二维数字图像相关(two-dimensional digital image correlation,2D-DIC)在测量过程中不可避免地会出现相机光轴与测量表面非垂直,由此产生的离面位移而将导致较大的测量误差,同时在视场受限的环境中难以通过单台相机完成大范围的变形测量。有鉴于此,该文开发了基于双反射镜的2D-DIC变形测量系统,使用双反射镜成像缓解离面运动对2D-DIC的影响,通过可移动相机实现小视场下的图像采集,提出基于频域移位的高精度图像拼接方法,并改进了融合函数,最终获得试样的高分辨率图像。单轴拉伸实验结果表明,轴向应变的平均相对误差相比传统2D-DIC方法降低12.82%,测量分辨率提高约34.92%,验证了测量系统的可行性和有效性。