A mathematical model of the bellows dispersion system is developed by combining the interior ballistic theory with structural dynamics theory to describe the deformation course of bellows. By analyzing the physical mo...A mathematical model of the bellows dispersion system is developed by combining the interior ballistic theory with structural dynamics theory to describe the deformation course of bellows. By analyzing the physical model of the bellows dispersion system, the dispersion course is divided into three stages. For each stage, mathematical model is built and its terminal conditions are given. The numerical simulation is based on the Runge-Kutta method and differential quadrature method. Simulation results of the model agree with those of the model built by only interior ballistics theory. However, this model is congruous with the actual dispersion course and can more easily determine the dispersion time and submunition displacement.展开更多
Based on the analysis of periodic equivalent control force of rolling missiles with x-rudder, the guidance loop model with direction error is established and the relationship between direction error and miss distance ...Based on the analysis of periodic equivalent control force of rolling missiles with x-rudder, the guidance loop model with direction error is established and the relationship between direction error and miss distance is analyzed. Results show that the miss distance is zero or a constant or infinite, and it is always zero when the real parts of system matrix eigenvalues decided by direction error are both positive values in an ideal system, in which all the lags are neglected. However, the miss distance gradually increases with the increase of the direction error and its variation is small when direction error is not more than 5° in the system, in which seeker lag and missile body lag are considered.展开更多
Based upon a discussion on the merits and limitations of proportional navigation(PN)guidance law in which constant gravity compensation is included as a part,a counterpart having varying compensations,which changes ...Based upon a discussion on the merits and limitations of proportional navigation(PN)guidance law in which constant gravity compensation is included as a part,a counterpart having varying compensations,which changes with pitching angle and line-of-sight angle,is substituted.Flight trajectory simulation over a submissile model is conducted,resulting in increased impact angle,shorter miss distance,smaller maximum normal overload and narrower terminal angle of attack.展开更多
To solve the control allocation problem of dual aero/jet vane control missile, dynamics e- quations in longitudinal plane are derived, and the structure of compound control loop is designed based on attitude autopilot...To solve the control allocation problem of dual aero/jet vane control missile, dynamics e- quations in longitudinal plane are derived, and the structure of compound control loop is designed based on attitude autopilot. Four brief compound control allocation strategies are researched and an- alyzed. Furthermore, a new strategy called chain combination variable proportional coefficient strat- egy based on rudder effect is presented. By simulation of initial climb trajectory, the characteristics of all the strategies are researched, and the results illustrate that the new strategy can meet the re- quirement well.展开更多
文摘A mathematical model of the bellows dispersion system is developed by combining the interior ballistic theory with structural dynamics theory to describe the deformation course of bellows. By analyzing the physical model of the bellows dispersion system, the dispersion course is divided into three stages. For each stage, mathematical model is built and its terminal conditions are given. The numerical simulation is based on the Runge-Kutta method and differential quadrature method. Simulation results of the model agree with those of the model built by only interior ballistics theory. However, this model is congruous with the actual dispersion course and can more easily determine the dispersion time and submunition displacement.
文摘Based on the analysis of periodic equivalent control force of rolling missiles with x-rudder, the guidance loop model with direction error is established and the relationship between direction error and miss distance is analyzed. Results show that the miss distance is zero or a constant or infinite, and it is always zero when the real parts of system matrix eigenvalues decided by direction error are both positive values in an ideal system, in which all the lags are neglected. However, the miss distance gradually increases with the increase of the direction error and its variation is small when direction error is not more than 5° in the system, in which seeker lag and missile body lag are considered.
文摘Based upon a discussion on the merits and limitations of proportional navigation(PN)guidance law in which constant gravity compensation is included as a part,a counterpart having varying compensations,which changes with pitching angle and line-of-sight angle,is substituted.Flight trajectory simulation over a submissile model is conducted,resulting in increased impact angle,shorter miss distance,smaller maximum normal overload and narrower terminal angle of attack.
文摘To solve the control allocation problem of dual aero/jet vane control missile, dynamics e- quations in longitudinal plane are derived, and the structure of compound control loop is designed based on attitude autopilot. Four brief compound control allocation strategies are researched and an- alyzed. Furthermore, a new strategy called chain combination variable proportional coefficient strat- egy based on rudder effect is presented. By simulation of initial climb trajectory, the characteristics of all the strategies are researched, and the results illustrate that the new strategy can meet the re- quirement well.