We proposed and experimentally demonstrated a cascaded tilted fiber Bragg grating(TFBG)for enhanced refractive index sensing.The TFBG is UV-inscribed in series in ordinary single-mode fiber(SMF)and reduced-diameter SM...We proposed and experimentally demonstrated a cascaded tilted fiber Bragg grating(TFBG)for enhanced refractive index sensing.The TFBG is UV-inscribed in series in ordinary single-mode fiber(SMF)and reduced-diameter SMF with the same tilt angle,and then excites two sets of superposed spectral combs of cladding modes.The cascaded TFBG with total length of 18 mm has a much wider wavelength range over 100 nm and narrower wavelength separation than that of a TFBG only in the SMF,enabling an enlarged range and a higher accuracy of refractive index measurement.The fabricated TFBG with the merits of enhanced sensing capability and temperature self-calibration presents great potentials in the biochemical sensing applications.展开更多
Computational optical imaging is an interdisciplinary subject integrating optics, mathematics, and information technology. It introduces information processing into optical imaging and combines it with intelligent com...Computational optical imaging is an interdisciplinary subject integrating optics, mathematics, and information technology. It introduces information processing into optical imaging and combines it with intelligent computing, subverting the imaging mechanism of traditional optical imaging which only relies on orderly information transmission. To meet the high-precision requirements of traditional optical imaging for optical processing and adjustment, as well as to solve its problems of being sensitive to gravity and temperature in use, we establish an optical imaging system model from the perspective of computational optical imaging and studies how to design and solve the imaging consistency problem of optical system under the influence of gravity, thermal effect, stress, and other external environment to build a high robustness optical system. The results show that the high robustness interval of the optical system exists and can effectively reduce the sensitivity of the optical system to the disturbance of each link, thus realizing the high robustness of optical imaging.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61775182 and 61505165)Marie Sktodowska-Curie Individual Fellowships in the European Union’s Horizon 2020 Research and Innovation Programme(Grant No.660648)
文摘We proposed and experimentally demonstrated a cascaded tilted fiber Bragg grating(TFBG)for enhanced refractive index sensing.The TFBG is UV-inscribed in series in ordinary single-mode fiber(SMF)and reduced-diameter SMF with the same tilt angle,and then excites two sets of superposed spectral combs of cladding modes.The cascaded TFBG with total length of 18 mm has a much wider wavelength range over 100 nm and narrower wavelength separation than that of a TFBG only in the SMF,enabling an enlarged range and a higher accuracy of refractive index measurement.The fabricated TFBG with the merits of enhanced sensing capability and temperature self-calibration presents great potentials in the biochemical sensing applications.
文摘Computational optical imaging is an interdisciplinary subject integrating optics, mathematics, and information technology. It introduces information processing into optical imaging and combines it with intelligent computing, subverting the imaging mechanism of traditional optical imaging which only relies on orderly information transmission. To meet the high-precision requirements of traditional optical imaging for optical processing and adjustment, as well as to solve its problems of being sensitive to gravity and temperature in use, we establish an optical imaging system model from the perspective of computational optical imaging and studies how to design and solve the imaging consistency problem of optical system under the influence of gravity, thermal effect, stress, and other external environment to build a high robustness optical system. The results show that the high robustness interval of the optical system exists and can effectively reduce the sensitivity of the optical system to the disturbance of each link, thus realizing the high robustness of optical imaging.