期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于ARIMA、GM(1,1)模型的高校ESI学科发展预测研究
1
作者 柳佳彤 康榆晨 +1 位作者 秦丽岩 曹芳 《情报工程》 2024年第1期85-95,共11页
[目的/意义]学科建设是高校提升教育质量的关键环节,对科学研究起着重要的支撑作用。采用数学统计建模探索一种科学有效的方法,实现潜力学科入围ESI前1%的时间预测,对于机构学科发展规划有着重要指导意义。[方法/过程]基于ESI数据库,获... [目的/意义]学科建设是高校提升教育质量的关键环节,对科学研究起着重要的支撑作用。采用数学统计建模探索一种科学有效的方法,实现潜力学科入围ESI前1%的时间预测,对于机构学科发展规划有着重要指导意义。[方法/过程]基于ESI数据库,获取目标机构4个潜力学科的被引频次和ESI入围阈值,建立时间序列并创建预测模型:先引入转换系数来去除不同数据库的差异,使其可比,然后分别拟合GM(1,1)模型、ARIMA模型,预测目标学术机构学科被引频次和ESI入围阈值,找到目标机构学科被引频次赶上ESI入围阈值的时间,即预测的入围时间。通过采用平均绝对百分比误差(MAPE)、平均绝对误差(MAE)和均方根误差(RMSE)对模型的拟合预测效果进行评估和比较,根据MAPE、MAE和RMSE三个指标来评价模型拟合及预测效果,以此为学校的学科建设及长远发展规划提供参考依据。[局限]本研究仅局限于目标机构4个学科的数据,尚需获取其他机构、更多学科的数据进行模型预测效果验证。[结果/结论]ARIMA模型的拟合效果和预测效果优于GM(1,1)模型。目标机构的生物学与生物化学学科可能于近期入围ESI前1%;免疫学科有入围ESI前1%学科的潜力,但入围时间可能会稍微滞后;分子生物学与遗传学和神经科学与行为学学科,离入围还有较大差距。 展开更多
关键词 ESI Incites 潜力学科 灰色模型 ARIMA模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部