Graft can induce inheritable variations in the progenies of the scion plants. Seedling of mungbean ( Vigna radiata (L.) Wilczek) was grafted onto the stem of sweet potato ( Ipomoea batatas (L.) Lam.). The growth...Graft can induce inheritable variations in the progenies of the scion plants. Seedling of mungbean ( Vigna radiata (L.) Wilczek) was grafted onto the stem of sweet potato ( Ipomoea batatas (L.) Lam.). The growth of the scion was maintained until the scion produced selfed seeds. We sowed the seeds for several generations under normal conditions. Distinct genetic variations appeared in the progenies. Similar variations did not appear in the generations of the scion sowed normally without graft. The variations seemed to be induced by the graft and they inherited steadily. For understanding the possible mechanism of the phenomenon (graft_induced inheritable variation), we analyzed the cytoplasmic and genomic DNA of the variations. The results showed that there was no restriction fragment length polymorphism (RFLP) in the cytoplasmic DNA between the original scion and the variation. However, significant difference between the scion and variation was recognized by random amplified polymorphic DNA (RAPD) analysis. In addition, there was no evidence that indicated the gene transformation from stock to scion. Our results suggest that the non_specific grafting has a pragmatic potential for plant breeding and crop improvement and, the genetic variation seems not to be caused simply by DNA transformation but most likely the stress induced mutation.展开更多
3Gd2O3-3Yb2O3-4Y2O3 (mole fraction, %) co-doped ZrO2 (GY-YSZ) thermal barrier coatings (TBCs) were produced by electron beam physical vapor deposition (EB-PVD). The oxidation behavior of GY-YSZ at 1 050 ℃ was...3Gd2O3-3Yb2O3-4Y2O3 (mole fraction, %) co-doped ZrO2 (GY-YSZ) thermal barrier coatings (TBCs) were produced by electron beam physical vapor deposition (EB-PVD). The oxidation behavior of GY-YSZ at 1 050 ℃ was investigated using impedance spectroscopy (IS) combined with scanning electron microscopy (SEM), Raman spectroscopy and X-ray diffractometry (XRD). Various electrical responses observed in the impedance spectra corresponding to GY-YSZ grains and grain boundaries were explained using circuit modeling. The change in the conduction mechanism of GY-YSZ was found to be related to the O^2- vacancy and lattice distortion due to the stabilizer diffusion during the oxidation. The results also suggested that the specific oxidation information about the GY-YSZ grains and grain boundaries should be acquired at a moderate measurement temperature, which was related to the resistance value in the impedance spectra. The resistance values of the GY-YSZ grains and grain boundaries should be measured at 200 ℃ and 300 ℃, respectively.展开更多
文摘Graft can induce inheritable variations in the progenies of the scion plants. Seedling of mungbean ( Vigna radiata (L.) Wilczek) was grafted onto the stem of sweet potato ( Ipomoea batatas (L.) Lam.). The growth of the scion was maintained until the scion produced selfed seeds. We sowed the seeds for several generations under normal conditions. Distinct genetic variations appeared in the progenies. Similar variations did not appear in the generations of the scion sowed normally without graft. The variations seemed to be induced by the graft and they inherited steadily. For understanding the possible mechanism of the phenomenon (graft_induced inheritable variation), we analyzed the cytoplasmic and genomic DNA of the variations. The results showed that there was no restriction fragment length polymorphism (RFLP) in the cytoplasmic DNA between the original scion and the variation. However, significant difference between the scion and variation was recognized by random amplified polymorphic DNA (RAPD) analysis. In addition, there was no evidence that indicated the gene transformation from stock to scion. Our results suggest that the non_specific grafting has a pragmatic potential for plant breeding and crop improvement and, the genetic variation seems not to be caused simply by DNA transformation but most likely the stress induced mutation.
基金Projects (50771009, 50731001 and 51071013) supported by the National Natural Science Foundations of China Project (2010CB631200) supported by the National Basic Research Program of China
文摘3Gd2O3-3Yb2O3-4Y2O3 (mole fraction, %) co-doped ZrO2 (GY-YSZ) thermal barrier coatings (TBCs) were produced by electron beam physical vapor deposition (EB-PVD). The oxidation behavior of GY-YSZ at 1 050 ℃ was investigated using impedance spectroscopy (IS) combined with scanning electron microscopy (SEM), Raman spectroscopy and X-ray diffractometry (XRD). Various electrical responses observed in the impedance spectra corresponding to GY-YSZ grains and grain boundaries were explained using circuit modeling. The change in the conduction mechanism of GY-YSZ was found to be related to the O^2- vacancy and lattice distortion due to the stabilizer diffusion during the oxidation. The results also suggested that the specific oxidation information about the GY-YSZ grains and grain boundaries should be acquired at a moderate measurement temperature, which was related to the resistance value in the impedance spectra. The resistance values of the GY-YSZ grains and grain boundaries should be measured at 200 ℃ and 300 ℃, respectively.