Kagome materials are a class of material with a lattice structure composed of corner-sharing triangles that produce various exotic electronic phenomena,such as Dirac fermions,van Hove singularities,and flat bands.Howe...Kagome materials are a class of material with a lattice structure composed of corner-sharing triangles that produce various exotic electronic phenomena,such as Dirac fermions,van Hove singularities,and flat bands.However,most of the known kagome materials have a flat band detached from the Fermi energy,which limits the investigation of the emergent flat band physics.In this work,by combining soft x-ray angle-resolved photoemission spectroscopy(ARPES)and the first-principles calculations,the electronic structure is investigated of a novel kagome metal CeNi_(5) with a clear dispersion along the kz direction and a Fermi level flat band in theΓ–K–M–Γplane.Besides,resonant ARPES experimental results indicate that the valence state of Ce ions is close to 4^(+),which is consistent with the transport measurement result.Our results demonstrate the unique electronic properties of CeNi_(5) as a new kagome metal and provide an ideal platform for exploring the flat band physics and the interactions between different types of flat bands by tuning the valence state of Ce ions.展开更多
We report a study of the electronic structure of BaFe_(2)As_(2) under uniaxial strains using angle-resolved photoemission spectroscopy and transport measurements. Two electron bands at the MY point, with an energy spl...We report a study of the electronic structure of BaFe_(2)As_(2) under uniaxial strains using angle-resolved photoemission spectroscopy and transport measurements. Two electron bands at the MY point, with an energy splitting of 50 meV in the strain-free sample, shift downward and merge into each other under a large uniaxial strain, while three hole bands at theГ point shift downward together. However, we also observed an enhancement of the resistance anisotropy under uniaxial strains by electrical transport measurements, implying that the applied strains strengthen the electronic nematic order in BaFe_(2)As_(2). These observations suggest that the splitting of these two electron bands at the MY point is not caused by the nematic order in BaFe_(2)As_(2).展开更多
基金Project support by the Science Fund from Shanghai Committee of Science and Technology,China (Grant No.23JC1403300)the Shanghai Municipal Science and Technology Major Project,China+3 种基金the TDLI Starting up Grant,the National Natural Science Foundation of China (Grant Nos.12374063,12204223,and 23Z990202580)the Fund from the Ministry of Science and Technology of China (Grant No.2023YFA1407400)the Shanghai Natural Science Fund for Original Exploration Program,China (Grant No.23ZR1479900)Shanghai Talent Program,China。
文摘Kagome materials are a class of material with a lattice structure composed of corner-sharing triangles that produce various exotic electronic phenomena,such as Dirac fermions,van Hove singularities,and flat bands.However,most of the known kagome materials have a flat band detached from the Fermi energy,which limits the investigation of the emergent flat band physics.In this work,by combining soft x-ray angle-resolved photoemission spectroscopy(ARPES)and the first-principles calculations,the electronic structure is investigated of a novel kagome metal CeNi_(5) with a clear dispersion along the kz direction and a Fermi level flat band in theΓ–K–M–Γplane.Besides,resonant ARPES experimental results indicate that the valence state of Ce ions is close to 4^(+),which is consistent with the transport measurement result.Our results demonstrate the unique electronic properties of CeNi_(5) as a new kagome metal and provide an ideal platform for exploring the flat band physics and the interactions between different types of flat bands by tuning the valence state of Ce ions.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11888101 and U1832202)the Chinese Academy of Sciences (Grant Nos.QYZDB-SSWSLH043,XDB28000000,and XDB33000000)+1 种基金the K.C.Wong Education Foundation (Grant No.GJTD-2018-01)the Informatization Plan of Chinese Academy of Sciences (Grant No.CAS-WX2021SF-0102)。
文摘We report a study of the electronic structure of BaFe_(2)As_(2) under uniaxial strains using angle-resolved photoemission spectroscopy and transport measurements. Two electron bands at the MY point, with an energy splitting of 50 meV in the strain-free sample, shift downward and merge into each other under a large uniaxial strain, while three hole bands at theГ point shift downward together. However, we also observed an enhancement of the resistance anisotropy under uniaxial strains by electrical transport measurements, implying that the applied strains strengthen the electronic nematic order in BaFe_(2)As_(2). These observations suggest that the splitting of these two electron bands at the MY point is not caused by the nematic order in BaFe_(2)As_(2).