Zirconium oxide (Zr02) thin films are deposited at room temperature by cathodic arc at substrate biases of 0 V, -60 V and -120 V, respectively. The crystal structure, composition, morphology, and deposition rate of ...Zirconium oxide (Zr02) thin films are deposited at room temperature by cathodic arc at substrate biases of 0 V, -60 V and -120 V, respectively. The crystal structure, composition, morphology, and deposition rate of the as-deposited thin films are systematically investigated by x-ray diffraction, x-ray photoelectron spectroscopy (XPS) as well as scanning electron microscopy. The results show that the crystal structure, morphology and deposition rate of the films all are dependant on substrate bias. With the increase of bias voltage from 0 V to -120 V, the zirconium oxide thin film grown on silicon wafer first exhibits monoclinic lattice and tetragonal lattice, further evolves monoclinic phase with the preferred orientation along the (-111) and (-222) directions at -60 V and finally along nearly one observed preferred (002) direction under -120 V. In addition, the variations of morphology with bias voltage are correlated to changes of the film structure. The results of XPS demonstrate that Zr elements are almost oxidized completely in the films achieved under -120 V bias.展开更多
A stable and homogeneous well-aligned air microplasma device for application at atmospheric pressure is designed and its electrical and optical characteristics are investigated. Current-voltage measurements and intens...A stable and homogeneous well-aligned air microplasma device for application at atmospheric pressure is designed and its electrical and optical characteristics are investigated. Current-voltage measurements and intensified charge coupled device (ICCD) images show that the well-aligned air microplasma device is able to generate a large-area and homogeneous discharge at the applied voltages ranging from 12 kV to 14 kV, with a repetition frequency of 5 kHz, which is attributed to the diffusion effect of plasma on dielectric surface. Moreover, this well-aligned microplasma device may result in the uniform and large-area surface modification of heat-sensitive PET polymers without damage, such as optimization in hydrophobicity and biocompatibility. In the biomedical field, the utility of this well-aligned microplasma device is further testified. It proves to be very efficient for the large-area and uniform inactivation of E. coli cells with a density of 103/cm2 on LB agar plate culture medium, and inactivation efficiency can reach up to 99% for 2-min treatment.展开更多
An dielectric barrier discharge (DBD) system in atmospheric pressure utilized for the treatment of industrial landfill leachate is reported. The discharge parameters, such as the operating frequency, gas flow rate, ...An dielectric barrier discharge (DBD) system in atmospheric pressure utilized for the treatment of industrial landfill leachate is reported. The discharge parameters, such as the operating frequency, gas flow rate, and treating duration, were found to affect significantly the removal of ammonia nitrogen (AN) in industrial landfill leachate. An increase in treating duration leads to an obvious increase in the removal efficiency of AN (up to 83%) and the leachate color changed from deep grey-black to transparent. Thus the dielectric barrier discharges in atmospheric pressure could degrade the landfill leachate effectively. Typical waveforms of both applied voltage and discharge current were also presented for analyzing the discharge processes under different discharge parameters. Optical emission spectra measurements indicate that oxidation species generated in oxygen DBD plasma play a crucial role in removing AN, oxidizing organic and inorganic substances and decolorizing the landfill leachate.展开更多
As a renewable carbon resource, biomass can be converted into polyols, aromatic hydrocarbons, alkanes, and other products by traditional catalytic liquefaction method, which has been widely used in production and life...As a renewable carbon resource, biomass can be converted into polyols, aromatic hydrocarbons, alkanes, and other products by traditional catalytic liquefaction method, which has been widely used in production and life. The efficient development and utilization of biomass energy will play a very positive role in solving the problems of energy and ecological environment. A way of combining the plasma electrolysis with traditional catalytic liquefaction realizes the efficient liquefaction of sawdust, which provides a new liquefaction way for traditional biomass conversion. In this experiment, the effects of solution composition, catalyst content and power supply on solution resistance and liquefaction rate are analyzed.It is found that solution composition and catalyst content have a great influence on solution resistance. The results show that the liquefaction rate is highest and the resistance is smallest when the solution resistance is 500 ?. The liquefaction rate is greatly affected by the solution temperature, and the solution temperature is determined by the output power between the two electrodes. The output power includes the heating power of the electric field and the discharge power of the plasma.We measure the electric potential field distribution in the solution and the plasma power. It is found that the output power between the two poles increases nonlinearly(from 0 to 270 W) with time. In two minutes, the electric field heating power increases from 0 to 105 W and then decreases to 70 W, while the plasma power increases from 0 to 200 W. It is well known that in the first 70 seconds of the experiment the electric field heating is dominant, and then the plasma heating turns into a main thermal source. In this paper, plasma electrolysis and traditional catalytic liquefaction are combined to achieve the efficient liquefaction of sawdust, which provides a new way for biomass liquefaction.展开更多
In recent years,significant increases in waste processing and material engineering have been seen by using advanced oxidation processes.The treatment results and energy yields of these processes are largely determined...In recent years,significant increases in waste processing and material engineering have been seen by using advanced oxidation processes.The treatment results and energy yields of these processes are largely determined by the generation and retention of reactive oxygen species(ROS).However,increasing the amount of ROS remains a key challenge because of the unavailability of performance-and energy-efficient techniques.In this study,plasma electrolysis,ultrasound,and plasma electrolysis combined with ultrasound were used to treat dimethyl sulfoxide(DMSO)solutions,and the results showed that the two methods can synergistically convert filament discharge into spark discharge,and the conversion of the discharge mode can significantly increase the concentration of OH radicals and effectively improve the efficiency of DMSO degradation.We verified the rationality of the results by analyzing the mass transfer path of ROS based on the reaction coefficients and found that the OH radicals in aqueous solution were mainly derived from the decomposition of hydrogen peroxide.These findings indicated that the synergistic action of plasma electrolysis and ultrasound can enhance the production of chemically reactive species,and provide new insights and guiding principles for the future translation of this combined strategy into real-life applications.Our results demonstrated that the synergistic strategy of ultrasound and plasma electrolysis is feasible in the switching mode and increasing the ROS,and may open new routes for materials engineering and pollutant degradation.展开更多
The seed of Carica papaya consists of a hard shell-like testa with inhibitors in vivo causing slow,erratic and asynchronous germination.In this work,plasma-activated water prepared by microsecond-pulsed plasma jets(μ...The seed of Carica papaya consists of a hard shell-like testa with inhibitors in vivo causing slow,erratic and asynchronous germination.In this work,plasma-activated water prepared by microsecond-pulsed plasma jets(μPAW)was applied to treat papaya seeds.TheμPAW after plasma activation of 30 min was about 40℃.The reactive species such as NO_(2),NO_(3),and H_(2)O_(2)in theμPAW activated from deionized water were measured and correlated to the seed germination rate and the seedling growth performance.TheμPAW-treated papaya seed achieved a higher germination rate of 90%,which is 26%higher than the control group using deionized water.Comparing the results with a hot water(40℃)reference group showed that the reactive species inμPAW played primary roles in germination improvement,with little effect caused by the heat shock.TheμPAW also sterilized the treated seeds,reducing the germination stress.The morphological change in the seeds was observed by SEM,showing an effect of physical etching after treatment promoting seed imbibition.The biochemical mechanism of the seed germination was deduced with reference to the evolution of surface chemistry,functional groups,and ABA content.The accelerated seed metabolism observed was corresponded to the chemical modification pathway.Besides,early seedlings developed from treated seeds were observed to be healthy,grow more leaves,and have better root structures.The content of MDA in the treated papaya seedlings decreased along with increased SOD and higher ion concentration.TheμPAW that can be prepared at atmospheric pressure for bulk production offers a low-risk and cost-effective seed priming technology that may significantly increase the production of agricultural crops.展开更多
文摘Zirconium oxide (Zr02) thin films are deposited at room temperature by cathodic arc at substrate biases of 0 V, -60 V and -120 V, respectively. The crystal structure, composition, morphology, and deposition rate of the as-deposited thin films are systematically investigated by x-ray diffraction, x-ray photoelectron spectroscopy (XPS) as well as scanning electron microscopy. The results show that the crystal structure, morphology and deposition rate of the films all are dependant on substrate bias. With the increase of bias voltage from 0 V to -120 V, the zirconium oxide thin film grown on silicon wafer first exhibits monoclinic lattice and tetragonal lattice, further evolves monoclinic phase with the preferred orientation along the (-111) and (-222) directions at -60 V and finally along nearly one observed preferred (002) direction under -120 V. In addition, the variations of morphology with bias voltage are correlated to changes of the film structure. The results of XPS demonstrate that Zr elements are almost oxidized completely in the films achieved under -120 V bias.
基金supported by the Natural Science Foundation of Fujian Province,China(Grant No.2014J01025)the National Natural Science Foundation of China(Grant No.11275261)+1 种基金the Natural Science Foundation of Guangdong Province,China(Grant No.2015A030313005)the Fund from the Fujian Provincia Key Laboratory for Plasma and Magnetic Resonance,China
文摘A stable and homogeneous well-aligned air microplasma device for application at atmospheric pressure is designed and its electrical and optical characteristics are investigated. Current-voltage measurements and intensified charge coupled device (ICCD) images show that the well-aligned air microplasma device is able to generate a large-area and homogeneous discharge at the applied voltages ranging from 12 kV to 14 kV, with a repetition frequency of 5 kHz, which is attributed to the diffusion effect of plasma on dielectric surface. Moreover, this well-aligned microplasma device may result in the uniform and large-area surface modification of heat-sensitive PET polymers without damage, such as optimization in hydrophobicity and biocompatibility. In the biomedical field, the utility of this well-aligned microplasma device is further testified. It proves to be very efficient for the large-area and uniform inactivation of E. coli cells with a density of 103/cm2 on LB agar plate culture medium, and inactivation efficiency can reach up to 99% for 2-min treatment.
文摘An dielectric barrier discharge (DBD) system in atmospheric pressure utilized for the treatment of industrial landfill leachate is reported. The discharge parameters, such as the operating frequency, gas flow rate, and treating duration, were found to affect significantly the removal of ammonia nitrogen (AN) in industrial landfill leachate. An increase in treating duration leads to an obvious increase in the removal efficiency of AN (up to 83%) and the leachate color changed from deep grey-black to transparent. Thus the dielectric barrier discharges in atmospheric pressure could degrade the landfill leachate effectively. Typical waveforms of both applied voltage and discharge current were also presented for analyzing the discharge processes under different discharge parameters. Optical emission spectra measurements indicate that oxidation species generated in oxygen DBD plasma play a crucial role in removing AN, oxidizing organic and inorganic substances and decolorizing the landfill leachate.
基金Project supported by the National Natural Science Foundation of China(Grant No.51877184)
文摘As a renewable carbon resource, biomass can be converted into polyols, aromatic hydrocarbons, alkanes, and other products by traditional catalytic liquefaction method, which has been widely used in production and life. The efficient development and utilization of biomass energy will play a very positive role in solving the problems of energy and ecological environment. A way of combining the plasma electrolysis with traditional catalytic liquefaction realizes the efficient liquefaction of sawdust, which provides a new liquefaction way for traditional biomass conversion. In this experiment, the effects of solution composition, catalyst content and power supply on solution resistance and liquefaction rate are analyzed.It is found that solution composition and catalyst content have a great influence on solution resistance. The results show that the liquefaction rate is highest and the resistance is smallest when the solution resistance is 500 ?. The liquefaction rate is greatly affected by the solution temperature, and the solution temperature is determined by the output power between the two electrodes. The output power includes the heating power of the electric field and the discharge power of the plasma.We measure the electric potential field distribution in the solution and the plasma power. It is found that the output power between the two poles increases nonlinearly(from 0 to 270 W) with time. In two minutes, the electric field heating power increases from 0 to 105 W and then decreases to 70 W, while the plasma power increases from 0 to 200 W. It is well known that in the first 70 seconds of the experiment the electric field heating is dominant, and then the plasma heating turns into a main thermal source. In this paper, plasma electrolysis and traditional catalytic liquefaction are combined to achieve the efficient liquefaction of sawdust, which provides a new way for biomass liquefaction.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51877184 and 11474305)the National Science and Technology Major Project of China(Grant No.2011ZX05032-003-003)。
文摘In recent years,significant increases in waste processing and material engineering have been seen by using advanced oxidation processes.The treatment results and energy yields of these processes are largely determined by the generation and retention of reactive oxygen species(ROS).However,increasing the amount of ROS remains a key challenge because of the unavailability of performance-and energy-efficient techniques.In this study,plasma electrolysis,ultrasound,and plasma electrolysis combined with ultrasound were used to treat dimethyl sulfoxide(DMSO)solutions,and the results showed that the two methods can synergistically convert filament discharge into spark discharge,and the conversion of the discharge mode can significantly increase the concentration of OH radicals and effectively improve the efficiency of DMSO degradation.We verified the rationality of the results by analyzing the mass transfer path of ROS based on the reaction coefficients and found that the OH radicals in aqueous solution were mainly derived from the decomposition of hydrogen peroxide.These findings indicated that the synergistic action of plasma electrolysis and ultrasound can enhance the production of chemically reactive species,and provide new insights and guiding principles for the future translation of this combined strategy into real-life applications.Our results demonstrated that the synergistic strategy of ultrasound and plasma electrolysis is feasible in the switching mode and increasing the ROS,and may open new routes for materials engineering and pollutant degradation.
基金the support from the Ministry of Higher Education Malaysia for the Fundamental Research Project(Grant Nos.FRGS/1/2018/STG02/UM/02/8 and IIRG006A-19FNW)Project supported by the National Natural Science Foundation of China(Grant No.51877184)
文摘The seed of Carica papaya consists of a hard shell-like testa with inhibitors in vivo causing slow,erratic and asynchronous germination.In this work,plasma-activated water prepared by microsecond-pulsed plasma jets(μPAW)was applied to treat papaya seeds.TheμPAW after plasma activation of 30 min was about 40℃.The reactive species such as NO_(2),NO_(3),and H_(2)O_(2)in theμPAW activated from deionized water were measured and correlated to the seed germination rate and the seedling growth performance.TheμPAW-treated papaya seed achieved a higher germination rate of 90%,which is 26%higher than the control group using deionized water.Comparing the results with a hot water(40℃)reference group showed that the reactive species inμPAW played primary roles in germination improvement,with little effect caused by the heat shock.TheμPAW also sterilized the treated seeds,reducing the germination stress.The morphological change in the seeds was observed by SEM,showing an effect of physical etching after treatment promoting seed imbibition.The biochemical mechanism of the seed germination was deduced with reference to the evolution of surface chemistry,functional groups,and ABA content.The accelerated seed metabolism observed was corresponded to the chemical modification pathway.Besides,early seedlings developed from treated seeds were observed to be healthy,grow more leaves,and have better root structures.The content of MDA in the treated papaya seedlings decreased along with increased SOD and higher ion concentration.TheμPAW that can be prepared at atmospheric pressure for bulk production offers a low-risk and cost-effective seed priming technology that may significantly increase the production of agricultural crops.