由于实现方式简单、攻击形式多样、威胁范围广、不易防御和区分,拒绝服务(DoS)攻击已经成为网络的最主要安全威胁之一。该文提出了一种ITCM-KNN算法,在此基础上建立了DoS检测框架。使用标准数据集KDD Cup 1999进行算法验证和分析实验。...由于实现方式简单、攻击形式多样、威胁范围广、不易防御和区分,拒绝服务(DoS)攻击已经成为网络的最主要安全威胁之一。该文提出了一种ITCM-KNN算法,在此基础上建立了DoS检测框架。使用标准数据集KDD Cup 1999进行算法验证和分析实验。采用基于信息增益算法选择了5个特征,在保证高检测效果的同时减少了特征的维数。该算法不需要对攻击进行学习和建模,使用少量的正常样本作为训练集,提高了检测性能。实验结果表明,改进的TCM-KNN算法检测率高于SVM等算法,达到99.99%。展开更多
In this paper, we introduce the origination of the DW ideology and its architecture & principles,as well as relative techniques. With the example that the MIS of ENWEI company, we discuss how to apply the base the...In this paper, we introduce the origination of the DW ideology and its architecture & principles,as well as relative techniques. With the example that the MIS of ENWEI company, we discuss how to apply the base theories of DW and implement its main techniques in modern companies. At the end of this paper ,we propose the ways that how to build an effective Decision Support System based on the MIS of ENWEI company.展开更多
This paper presents the idea of software reuse and object-oriented analysis technology and disscusses the development step of object-oriented analysis ,as well as the implementation model of enterprise's MIS which...This paper presents the idea of software reuse and object-oriented analysis technology and disscusses the development step of object-oriented analysis ,as well as the implementation model of enterprise's MIS which included four parts:objects model,control model ,interface model and implement explains.展开更多
相较于传统的无线电数据特征提取方法,深度学习具有高效灵活的特点,其可以有效提高调制数据识别的性能。然而在实践中,收集大量可靠的无线电调制样本数据有时代价是昂贵和困难的,这在很大程度上限制了深度学习模型的性能。本文提出了基...相较于传统的无线电数据特征提取方法,深度学习具有高效灵活的特点,其可以有效提高调制数据识别的性能。然而在实践中,收集大量可靠的无线电调制样本数据有时代价是昂贵和困难的,这在很大程度上限制了深度学习模型的性能。本文提出了基于生成对抗网络(Generative Adversarial Networks,GAN)的无线电调制数据增扩模型RMAbGAN(Radio Modulation data Augmentation based on Generative Adversarial Networks),该模型通过挖掘不同信噪比与调制方式下的无线电调制数据特征差异,生成符合调制方式与信噪比特点的无线电调制数据,模型中的生成器部分捕获无线电调制数据分布特征,辨识器部分优化生成器性能,两者相互博弈性能不断提升;在此基础上,对无线电数据采样特点与无线电数据传统增强方法进行深度分析与研究,发现了无线电调制数据蕴含的空域特征与时序特征,设计出了能深刻捕获无线电数据空域特征与时序特征的无线电数据分类模型AMCST(Automatic Modulation Classification based Spatial and Temporal feature)。通过大量的对比实验,表明相较于基于旋转变换的无线电调制数据增扩模型,RMAbGAN模型在无线电调制数据增扩方面更具有鲁棒性和泛化能力,可以实现更高的调制分类准确率。此外,相较基于长短期记忆网络(Long Short-Term Memory,LSTM)的调制分类模型、基于残差网络(Residual Networks,ResNet)的调制分类模型等传统模型,AMCST模型在调制数据分类方面更具有稳定性和可用性,同时也具有更高的分类准确率。展开更多
文摘由于实现方式简单、攻击形式多样、威胁范围广、不易防御和区分,拒绝服务(DoS)攻击已经成为网络的最主要安全威胁之一。该文提出了一种ITCM-KNN算法,在此基础上建立了DoS检测框架。使用标准数据集KDD Cup 1999进行算法验证和分析实验。采用基于信息增益算法选择了5个特征,在保证高检测效果的同时减少了特征的维数。该算法不需要对攻击进行学习和建模,使用少量的正常样本作为训练集,提高了检测性能。实验结果表明,改进的TCM-KNN算法检测率高于SVM等算法,达到99.99%。
文摘In this paper, we introduce the origination of the DW ideology and its architecture & principles,as well as relative techniques. With the example that the MIS of ENWEI company, we discuss how to apply the base theories of DW and implement its main techniques in modern companies. At the end of this paper ,we propose the ways that how to build an effective Decision Support System based on the MIS of ENWEI company.
文摘This paper presents the idea of software reuse and object-oriented analysis technology and disscusses the development step of object-oriented analysis ,as well as the implementation model of enterprise's MIS which included four parts:objects model,control model ,interface model and implement explains.
文摘相较于传统的无线电数据特征提取方法,深度学习具有高效灵活的特点,其可以有效提高调制数据识别的性能。然而在实践中,收集大量可靠的无线电调制样本数据有时代价是昂贵和困难的,这在很大程度上限制了深度学习模型的性能。本文提出了基于生成对抗网络(Generative Adversarial Networks,GAN)的无线电调制数据增扩模型RMAbGAN(Radio Modulation data Augmentation based on Generative Adversarial Networks),该模型通过挖掘不同信噪比与调制方式下的无线电调制数据特征差异,生成符合调制方式与信噪比特点的无线电调制数据,模型中的生成器部分捕获无线电调制数据分布特征,辨识器部分优化生成器性能,两者相互博弈性能不断提升;在此基础上,对无线电数据采样特点与无线电数据传统增强方法进行深度分析与研究,发现了无线电调制数据蕴含的空域特征与时序特征,设计出了能深刻捕获无线电数据空域特征与时序特征的无线电数据分类模型AMCST(Automatic Modulation Classification based Spatial and Temporal feature)。通过大量的对比实验,表明相较于基于旋转变换的无线电调制数据增扩模型,RMAbGAN模型在无线电调制数据增扩方面更具有鲁棒性和泛化能力,可以实现更高的调制分类准确率。此外,相较基于长短期记忆网络(Long Short-Term Memory,LSTM)的调制分类模型、基于残差网络(Residual Networks,ResNet)的调制分类模型等传统模型,AMCST模型在调制数据分类方面更具有稳定性和可用性,同时也具有更高的分类准确率。