针对液晶可调滤波片高光谱成像系统记录动态场景的成像特点,提出一种图-谱结合的压缩感知高光谱视频图像复原方法。首先,通过前景目标检测获得运动前景目标的高光谱图像,实现运动前景目标与背景区域分离,并根据前景目标检测结果将背景...针对液晶可调滤波片高光谱成像系统记录动态场景的成像特点,提出一种图-谱结合的压缩感知高光谱视频图像复原方法。首先,通过前景目标检测获得运动前景目标的高光谱图像,实现运动前景目标与背景区域分离,并根据前景目标检测结果将背景区域划分为运动区域(被前景目标遮挡区域)与静止区域(未被前景目标遮挡区域)。然后,基于高光谱图像空间维、光谱维相关性,对静止区域进行字典学习获得稀疏先验信息,结合压缩感知理论用于运动区域恢复,得到完整的背景区域高光谱图像。最后,将运动前景目标高光谱图像与背景区域高光谱图像相结合,得到高光谱视频图像。实验结果表明:本文提出的高光谱视频图像复原方法在峰值信噪比和视觉效果上都要优于现有算法,峰值信噪比平均提高5 d B以上。展开更多
Polarized hyperspectral imaging,which has been widely studied worldwide,can obtain four-dimensional data including polarization,spectral,and spatial domains.To simplify data acquisition,compressive sensing theory is u...Polarized hyperspectral imaging,which has been widely studied worldwide,can obtain four-dimensional data including polarization,spectral,and spatial domains.To simplify data acquisition,compressive sensing theory is utilized in each domain.The polarization information represented by the four Stokes parameters currently requires at least two compressions.This work achieves full-Stokes single compression by introducing deep learning reconstruction.The four Stokes parameters are modulated by a quarter-wave plate(QWP)and a liquid crystal tunable filter(LCTF)and then compressed into a single light intensity detected by a complementary metal oxide semiconductor(CMOS).Data processing involves model training and polarization reconstruction.The reconstruction model is trained by feeding the known Stokes parameters and their single compressions into a deep learning framework.Unknown Stokes parameters can be reconstructed from a single compression using the trained model.Benefiting from the acquisition simplicity and reconstruction efficiency,this work well facilitates the development and application of polarized hyperspectral imaging.展开更多
文摘针对液晶可调滤波片高光谱成像系统记录动态场景的成像特点,提出一种图-谱结合的压缩感知高光谱视频图像复原方法。首先,通过前景目标检测获得运动前景目标的高光谱图像,实现运动前景目标与背景区域分离,并根据前景目标检测结果将背景区域划分为运动区域(被前景目标遮挡区域)与静止区域(未被前景目标遮挡区域)。然后,基于高光谱图像空间维、光谱维相关性,对静止区域进行字典学习获得稀疏先验信息,结合压缩感知理论用于运动区域恢复,得到完整的背景区域高光谱图像。最后,将运动前景目标高光谱图像与背景区域高光谱图像相结合,得到高光谱视频图像。实验结果表明:本文提出的高光谱视频图像复原方法在峰值信噪比和视觉效果上都要优于现有算法,峰值信噪比平均提高5 d B以上。
基金supported by the National Key Scientific Instrument and Equipment Development Project of China(No.61527802)。
文摘Polarized hyperspectral imaging,which has been widely studied worldwide,can obtain four-dimensional data including polarization,spectral,and spatial domains.To simplify data acquisition,compressive sensing theory is utilized in each domain.The polarization information represented by the four Stokes parameters currently requires at least two compressions.This work achieves full-Stokes single compression by introducing deep learning reconstruction.The four Stokes parameters are modulated by a quarter-wave plate(QWP)and a liquid crystal tunable filter(LCTF)and then compressed into a single light intensity detected by a complementary metal oxide semiconductor(CMOS).Data processing involves model training and polarization reconstruction.The reconstruction model is trained by feeding the known Stokes parameters and their single compressions into a deep learning framework.Unknown Stokes parameters can be reconstructed from a single compression using the trained model.Benefiting from the acquisition simplicity and reconstruction efficiency,this work well facilitates the development and application of polarized hyperspectral imaging.