大型高海拔空气簇射观测站(Large High Altitude Air Shower Observatory,LHAASO)的广角切伦科夫望远镜阵列(Wide Field of View Cherenkov Telescope Array,WFCTA)采用新型的固态半导体探测器硅光电倍增管(silicon photomultiplier tub...大型高海拔空气簇射观测站(Large High Altitude Air Shower Observatory,LHAASO)的广角切伦科夫望远镜阵列(Wide Field of View Cherenkov Telescope Array,WFCTA)采用新型的固态半导体探测器硅光电倍增管(silicon photomultiplier tube,SiPM)作为光敏探测器.由于SiPM的增益对温度较为敏感,为使SiPM增益在变温环境下保持稳定,本文研究出了SiPM增益温度漂移的精确补偿方法.该方法通过粗调和细调两个数字电位器的方式实现对低压差线性稳压器(low dropout regulator,LDO)输出偏压的调节,并根据刻度出的模数转换器(Analog-to-Digital Converter,ADC)监测值与真实偏压的关系,利用ADC的监测值进行反馈调节的方法实现偏压的精确调节,最终实现SiPM增益的精确补偿.通过使用以该方法实现的电路后,在相似温度变化范围内,SiPM的增益波动由补偿前的71.8%降低至0.8%.结果显示该方法能够实现对因温度引起的SiPM增益漂移的很好的补偿.展开更多
广角切伦科夫望远镜阵列(Wide Field of View Cherenkov Telescope Array,WFCTA)是大型高海拔空气簇射观测站(Large High Altitude Air Shower Observatory,LHAASO)的主要探测器阵列之一,其物理目标是完成30 TeV到几EeV的宇宙线能谱测量...广角切伦科夫望远镜阵列(Wide Field of View Cherenkov Telescope Array,WFCTA)是大型高海拔空气簇射观测站(Large High Altitude Air Shower Observatory,LHAASO)的主要探测器阵列之一,其物理目标是完成30 TeV到几EeV的宇宙线能谱测量.望远镜读出电子学系统包括1024个通道,需要处理的信号既有脉宽为几十ns的切伦科夫信号,又有脉宽为μs的荧光信号.本文详细介绍了望远镜读出电子学系统的架构设计,为了减少数据量,设计了在线触发的事例筛选架构:在子模块电子学上先进行第一级硬件触发,再在触发电路上实现事例触发.同时该电子学系统采用了4点压缩的方式获取波形数据,覆盖波形宽度为2.24μs.实验室测试结果表明:读出电子学系统可以正确获取信号波形,电荷测量的动态范围可以覆盖10 P.E.(Photon Electron)到32143 P.E.,高增益通道和低增益通道的重叠区从857 P.E.到1714 P.E.,高低增益比值与设计相符,电荷分辨率在10 P.E.时优于20%,在32000 P.E.时优于5%,相对偏差在10 P.E.时优于5%,在32000 P.E.时优于2%,该读出电子学系统满足设计要求.展开更多
文摘大型高海拔空气簇射观测站(Large High Altitude Air Shower Observatory,LHAASO)的广角切伦科夫望远镜阵列(Wide Field of View Cherenkov Telescope Array,WFCTA)采用新型的固态半导体探测器硅光电倍增管(silicon photomultiplier tube,SiPM)作为光敏探测器.由于SiPM的增益对温度较为敏感,为使SiPM增益在变温环境下保持稳定,本文研究出了SiPM增益温度漂移的精确补偿方法.该方法通过粗调和细调两个数字电位器的方式实现对低压差线性稳压器(low dropout regulator,LDO)输出偏压的调节,并根据刻度出的模数转换器(Analog-to-Digital Converter,ADC)监测值与真实偏压的关系,利用ADC的监测值进行反馈调节的方法实现偏压的精确调节,最终实现SiPM增益的精确补偿.通过使用以该方法实现的电路后,在相似温度变化范围内,SiPM的增益波动由补偿前的71.8%降低至0.8%.结果显示该方法能够实现对因温度引起的SiPM增益漂移的很好的补偿.