期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Transformer的交通标志检测模型研究 被引量:1
1
作者 严丽平 张文剥 +3 位作者 宋凯 蔡彧 王静 徐嘉悦 《华东交通大学学报》 2024年第1期61-69,共9页
【目的】为了解决在复杂环境下,对小目标特征困难以及对小目标检测效果不佳等问题,提出了一种基于Transformer的交通标志检测基干模型。【方法】通过充分利用卷积和Transformer的优势,构建了一种注意力融合的多尺度特征提取基干模型,能... 【目的】为了解决在复杂环境下,对小目标特征困难以及对小目标检测效果不佳等问题,提出了一种基于Transformer的交通标志检测基干模型。【方法】通过充分利用卷积和Transformer的优势,构建了一种注意力融合的多尺度特征提取基干模型,能够使基干网络以全局上下文信息为支撑,有选择地增强有用信息的特征,并抑制不重要的特征。此外,为了在增强特征融合的同时防止网络退化,还加入了类池连接。最后,在TT100K数据集上进行实验。【结果】实验结果表明,以该模型为骨干的元体系结构取得了最高84%的mAP,与基线模型相比m AP最大提升约7%。【结论】模型在提高特征提取效果的同时,也为交通标志检测提供了一种新的思路。 展开更多
关键词 交通标志检测 自动驾驶 TRANSFORMER 注意力融合
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部