The morphologies and formation process of Ni-pool defects in WC?8Ni cemented carbides were studied. The SEM images show that Ni-pool generally has two kinds of morphologies: “island” in isolation and “ring” around...The morphologies and formation process of Ni-pool defects in WC?8Ni cemented carbides were studied. The SEM images show that Ni-pool generally has two kinds of morphologies: “island” in isolation and “ring” around a new phase. In the obtained samples with “ring-like Ni-pool”, WC, Ni and Ni2W4C (η phase) phases were detected in XRD patterns. Combined with SEM, EDX and XRD results, it is found that the phase in the center of the “ring-like Ni-pool” is Ni2W4C (η phase) and the main chemical components of Ni-pool are Ni, W and C. In addition, the relationships among large size Ni (agglomerated) particles, volatile impurities, pores and carbon content vs forming process of the Ni-pool defects for WC?8Ni cemented carbides are also presented and discussed.展开更多
Piezoelectric materials are capable of actuation and sensing and have been used in a wide variety of smart devices and structures.Active fiber composite and macro fiber composite are newly developed types of piezoelec...Piezoelectric materials are capable of actuation and sensing and have been used in a wide variety of smart devices and structures.Active fiber composite and macro fiber composite are newly developed types of piezoelectric composites,and show superior properties to monolithic piezoelectric wafer due to their distinctive structures.Numerous work has focused on the performance prediction of the composites by evaluation of structural parameters and properties of the constituent materials with analytical and numerical methods.Various applications have been explored for the piezoelectric fiber composites,including vibration and noise control,health monitoring,morphing of structures and energy harvesting,in which the composites play key role and demonstrate the necessity for further development.展开更多
17(Cu-10Ni)-(NiFe2O4-10NiO) cermets were prepared by cold pressing and sintering in nitrogen atmosphere, and tested as inert anode for aluminum electrolysis at 960 °C for 10 and 40 h, respectively. Microstruc...17(Cu-10Ni)-(NiFe2O4-10NiO) cermets were prepared by cold pressing and sintering in nitrogen atmosphere, and tested as inert anode for aluminum electrolysis at 960 °C for 10 and 40 h, respectively. Microstructures and phase compositions of the as-sintered and post-electrolyzed samples were investigated. The impurity contents in the electrolyte and the cathode metal were detected in order to investigate the corrosion characteristic of the elements of Fe, Ni and Cu in the anode. A dense NiFe2O4 layer was observed on the surface of anode and thickened with prolonging the electrolysis time. In the newly formed dense ceramic layer, NiO phase disappeared as a result of being swallowed by NiFe2O4 phase, and the metal phase was oxidized during the electrolysis in which Cu element showed a higher dissolution rate than Fe and Ni elements. The formation process of the dense ceramic layer during the electrolysis was presented and explained by using the corrosion mode of the metal phase and the transformation mechanism from NiO phase to NiFe2O4 phase.展开更多
压电纤维复合物在驱动、传感、结构健康检测等领域具有广泛应用,研究压电纤维复合物的驱动性能对于压电纤维复合物实际应用具有重要意义。通过实验研究不同驱动电压条件(峰值、频率及偏置)对压电纤维复合物悬臂梁结构顶端位移的影响,探...压电纤维复合物在驱动、传感、结构健康检测等领域具有广泛应用,研究压电纤维复合物的驱动性能对于压电纤维复合物实际应用具有重要意义。通过实验研究不同驱动电压条件(峰值、频率及偏置)对压电纤维复合物悬臂梁结构顶端位移的影响,探讨悬臂梁基板材料与压电纤维复合物驱动性能的关系,基于欧拉-伯努利梁理论利用悬臂梁顶端位移计算压电纤维复合物的驱动力。结果表明:压电纤维复合物的驱动性能具有明显的迟滞性。悬臂梁顶端位移的大小与驱动电压峰的峰值呈线性关系,且其不仅与驱动电压的峰值有关,还与驱动电压的偏置、频率有关。压电纤维复合物的驱动性能随基板不同而不同,其对刚性铝板的驱动力为5.2 m N,对柔性麦拉膜的驱动力为0.2 m N。展开更多
Wurtzite aluminum nitride(AlN) films were deposited on Si(100) wafers under various sputtering pressures by radio-frequency(RF) reactive magnetron sputtering. The film properties were investigated by XRD, SEM, A...Wurtzite aluminum nitride(AlN) films were deposited on Si(100) wafers under various sputtering pressures by radio-frequency(RF) reactive magnetron sputtering. The film properties were investigated by XRD, SEM, AFM, XPS and nanoindenter techniques. It is suggested from the XRD patterns that highly c-axis oriented films grow preferentially at low pressures and the growth of(100) planes are preferred at higher pressures. The SEM and AFM images both reveal that the deposition rate and the surface roughness decrease while the average grain size increases with increasing the sputtering pressure. XPS results show that lowering the sputtering pressure is a useful way to minimize the incorporation of oxygen atoms into the AlN films and hence a film with closer stoichiometric composition is obtained. From the measurement of nanomechanical properties of AlN thin films, the largest hardness and elastic modulus are obtained at 0.30 Pa.展开更多
The porous alumina ceramics with lamellar structure were fabricated successfully by freeze casting. The viscosities of alumina slurries, pore structures, porosities and mechanical properties of the sintered ceramics w...The porous alumina ceramics with lamellar structure were fabricated successfully by freeze casting. The viscosities of alumina slurries, pore structures, porosities and mechanical properties of the sintered ceramics were investigated by introducing both types of alcohols as water solidification modifier into the initial slurries, such as ethanol and 1-propanol. With the addition of ethanol or 1-propanol, the viscosities of slurries increased and porosities of sintered ceramics decreased. The compressive strengths of the sintered porous alumina ceramics were improved due to a good connectivity between lamellae with the addition of both types of alcohols. The lowest porosities of 68.52% and 73.72% and highest compressive strengths of 18.2 MPa and 15.0 MPa were obtained by the addition of 30% ethanol in mass fraction and 1-propanol, respectively.展开更多
文摘The morphologies and formation process of Ni-pool defects in WC?8Ni cemented carbides were studied. The SEM images show that Ni-pool generally has two kinds of morphologies: “island” in isolation and “ring” around a new phase. In the obtained samples with “ring-like Ni-pool”, WC, Ni and Ni2W4C (η phase) phases were detected in XRD patterns. Combined with SEM, EDX and XRD results, it is found that the phase in the center of the “ring-like Ni-pool” is Ni2W4C (η phase) and the main chemical components of Ni-pool are Ni, W and C. In addition, the relationships among large size Ni (agglomerated) particles, volatile impurities, pores and carbon content vs forming process of the Ni-pool defects for WC?8Ni cemented carbides are also presented and discussed.
基金Project(51072235) supported by the National Natural Science Foundation of ChinaProject(11JJ1008) supported by the Natural Science Foundation of Hunan Province,China+2 种基金Project(20110162110044) supported by the PhD Program Foundation of Ministry of Education of ChinaProject(7433001207) supported by Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(2001JF3215) supported by Hunan Provincial Science and Technology Plan,China
文摘Piezoelectric materials are capable of actuation and sensing and have been used in a wide variety of smart devices and structures.Active fiber composite and macro fiber composite are newly developed types of piezoelectric composites,and show superior properties to monolithic piezoelectric wafer due to their distinctive structures.Numerous work has focused on the performance prediction of the composites by evaluation of structural parameters and properties of the constituent materials with analytical and numerical methods.Various applications have been explored for the piezoelectric fiber composites,including vibration and noise control,health monitoring,morphing of structures and energy harvesting,in which the composites play key role and demonstrate the necessity for further development.
基金Project (2005CB623703) supported by the National Basic Research Program of ChinaProject (50721003) supported by the National Natural Science Fund for Innovation Group of ChinaProject (2008AA030501) supported by the National High-Tech Research and Development Program of China
文摘17(Cu-10Ni)-(NiFe2O4-10NiO) cermets were prepared by cold pressing and sintering in nitrogen atmosphere, and tested as inert anode for aluminum electrolysis at 960 °C for 10 and 40 h, respectively. Microstructures and phase compositions of the as-sintered and post-electrolyzed samples were investigated. The impurity contents in the electrolyte and the cathode metal were detected in order to investigate the corrosion characteristic of the elements of Fe, Ni and Cu in the anode. A dense NiFe2O4 layer was observed on the surface of anode and thickened with prolonging the electrolysis time. In the newly formed dense ceramic layer, NiO phase disappeared as a result of being swallowed by NiFe2O4 phase, and the metal phase was oxidized during the electrolysis in which Cu element showed a higher dissolution rate than Fe and Ni elements. The formation process of the dense ceramic layer during the electrolysis was presented and explained by using the corrosion mode of the metal phase and the transformation mechanism from NiO phase to NiFe2O4 phase.
文摘压电纤维复合物在驱动、传感、结构健康检测等领域具有广泛应用,研究压电纤维复合物的驱动性能对于压电纤维复合物实际应用具有重要意义。通过实验研究不同驱动电压条件(峰值、频率及偏置)对压电纤维复合物悬臂梁结构顶端位移的影响,探讨悬臂梁基板材料与压电纤维复合物驱动性能的关系,基于欧拉-伯努利梁理论利用悬臂梁顶端位移计算压电纤维复合物的驱动力。结果表明:压电纤维复合物的驱动性能具有明显的迟滞性。悬臂梁顶端位移的大小与驱动电压峰的峰值呈线性关系,且其不仅与驱动电压的峰值有关,还与驱动电压的偏置、频率有关。压电纤维复合物的驱动性能随基板不同而不同,其对刚性铝板的驱动力为5.2 m N,对柔性麦拉膜的驱动力为0.2 m N。
基金Project(21271188)supported by the National Natural Science Foundation of ChinaProject(2012M521541)supported by the China Postdoctoral Science Foundation+2 种基金Project(2012QNZT002)supported by the Fundamental Research Funds for the Central South Universities,ChinaProject(20110933K)supported by the State Key Laboratory of Powder Metallurgy,ChinaProject(CSU2012024)supported by the Open-End Fund for Valuable and Precision Instruments of Central South University,China
文摘Wurtzite aluminum nitride(AlN) films were deposited on Si(100) wafers under various sputtering pressures by radio-frequency(RF) reactive magnetron sputtering. The film properties were investigated by XRD, SEM, AFM, XPS and nanoindenter techniques. It is suggested from the XRD patterns that highly c-axis oriented films grow preferentially at low pressures and the growth of(100) planes are preferred at higher pressures. The SEM and AFM images both reveal that the deposition rate and the surface roughness decrease while the average grain size increases with increasing the sputtering pressure. XPS results show that lowering the sputtering pressure is a useful way to minimize the incorporation of oxygen atoms into the AlN films and hence a film with closer stoichiometric composition is obtained. From the measurement of nanomechanical properties of AlN thin films, the largest hardness and elastic modulus are obtained at 0.30 Pa.
基金Projects(20110162130003,20110162110044)supported by the PhD Programs Foundation of Ministry of Education of ChinaProjects(51172288,51072235)supported by the National Natural Science Foundation of ChinaProject(11JJ1008)supported by Hunan Provincial Natural Science Foundation of China
文摘The porous alumina ceramics with lamellar structure were fabricated successfully by freeze casting. The viscosities of alumina slurries, pore structures, porosities and mechanical properties of the sintered ceramics were investigated by introducing both types of alcohols as water solidification modifier into the initial slurries, such as ethanol and 1-propanol. With the addition of ethanol or 1-propanol, the viscosities of slurries increased and porosities of sintered ceramics decreased. The compressive strengths of the sintered porous alumina ceramics were improved due to a good connectivity between lamellae with the addition of both types of alcohols. The lowest porosities of 68.52% and 73.72% and highest compressive strengths of 18.2 MPa and 15.0 MPa were obtained by the addition of 30% ethanol in mass fraction and 1-propanol, respectively.