We present findings on the effect of nanometer-sized silica-based pores on the glass transition of aqueous solutions of lithium bis(trifluoromethane)sulfonimide(LiTFSI)and lithium difluorosulfimide(LiFSI),respectively...We present findings on the effect of nanometer-sized silica-based pores on the glass transition of aqueous solutions of lithium bis(trifluoromethane)sulfonimide(LiTFSI)and lithium difluorosulfimide(LiFSI),respectively.Our experimental results demonstrate a clear dependence of the confinement effect on the anion type,particularly for water-rich solutions,in which the precipitation of crystalized ice under cooling process induces the formation of freeze-concentrated phase confined between pore wall and core ice.As this liquid layer becomes thinner,the freeze-concentrated phase experiences glass transition at increasingly higher temperatures in solutions of LiTFSI.However,differently,for solutions of LiFSI and LiCl,this secondary confinement has a negligible effect on the glass transition of solutions confined wherein.These different behaviors emphasize the obvious difference in the dynamic properties’response of LiTFSI and LiFSI solutions to spatial confinement and particularly to the presence of the hydrophilic pore wall.展开更多
Transport properties and the associated structural heterogeneity of room temperature aqueous ionic liquids and especially of super-concentrated electrolyte aqueous solutions have received increasing attention,due to t...Transport properties and the associated structural heterogeneity of room temperature aqueous ionic liquids and especially of super-concentrated electrolyte aqueous solutions have received increasing attention,due to their potential application in ionic battery.This paper briefly reviews the results reported mainly since 2010 about the liquid-liquid separation,aggregation of polar and apolar domains in neat RTILs,and solvent clusters and 3D networks chiefly constructed by anions in super-concentrated electrolyte solutions.At the same time,the dominating effect of desolvation process of metal ions at electrode/electrolyte interface upon the transport of metal ions is stressed.This paper also presents the current understanding of how water affects the anion-cation interaction,structural heterogeneities,the structure of primary coordination sheath of metal ions and consequently their transport properties in free water-poor electrolytes.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11974385 and 91956101).
文摘We present findings on the effect of nanometer-sized silica-based pores on the glass transition of aqueous solutions of lithium bis(trifluoromethane)sulfonimide(LiTFSI)and lithium difluorosulfimide(LiFSI),respectively.Our experimental results demonstrate a clear dependence of the confinement effect on the anion type,particularly for water-rich solutions,in which the precipitation of crystalized ice under cooling process induces the formation of freeze-concentrated phase confined between pore wall and core ice.As this liquid layer becomes thinner,the freeze-concentrated phase experiences glass transition at increasingly higher temperatures in solutions of LiTFSI.However,differently,for solutions of LiFSI and LiCl,this secondary confinement has a negligible effect on the glass transition of solutions confined wherein.These different behaviors emphasize the obvious difference in the dynamic properties’response of LiTFSI and LiFSI solutions to spatial confinement and particularly to the presence of the hydrophilic pore wall.
基金the National Natural Science Foundation of China(Grant Nos.11974385 and 91956101)the Fund from the Chinese Academy of Sciences(Grant No.1731300500030)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB07030100).
文摘Transport properties and the associated structural heterogeneity of room temperature aqueous ionic liquids and especially of super-concentrated electrolyte aqueous solutions have received increasing attention,due to their potential application in ionic battery.This paper briefly reviews the results reported mainly since 2010 about the liquid-liquid separation,aggregation of polar and apolar domains in neat RTILs,and solvent clusters and 3D networks chiefly constructed by anions in super-concentrated electrolyte solutions.At the same time,the dominating effect of desolvation process of metal ions at electrode/electrolyte interface upon the transport of metal ions is stressed.This paper also presents the current understanding of how water affects the anion-cation interaction,structural heterogeneities,the structure of primary coordination sheath of metal ions and consequently their transport properties in free water-poor electrolytes.