The discharge morphology of pulsed dielectric barrier discharge(PDBD) plays important roles in its applications. Here, we systematically investigated the effects of the voltage amplitude,discharge gap, and O_(2)conten...The discharge morphology of pulsed dielectric barrier discharge(PDBD) plays important roles in its applications. Here, we systematically investigated the effects of the voltage amplitude,discharge gap, and O_(2)content on the PDBD morphology, and revealed the possible underlying mechanism of the U-shaped formation. First, the morphological evolution under different conditions was recorded. A unique U-shaped region appears in the middle edge region when the gap is larger than 2 mm, while the entire discharge region remains columnar under a 2 mm gap in He PDBD. The width of the discharge and the U-shaped region increase with the increase in voltage, and decrease with the increase of the gap and O_(2)content. To explain this phenomenon,a two-dimensional symmetric model was developed to simulate the spatiotemporal evolution of different species and calculate the electric thrust. The discharge morphology evolution directly corresponds to the excited-state atomic reduction process. The electric thrust on the charged particles mainly determines the reaction region and strongly influences the U-shaped formation.When the gap is less than 2 mm, the electric thrust is homogeneous throughout the entire region,resulting in a columnar shape. However, when the gap is larger than 2 mm or O_(2)is added, the electric thrust in the edge region becomes greater than that in the middle, leading to the U-shaped formation. Furthermore, in He PDBD, the charged particles generating electric thrust are mainly electrons and helium ions, while in He/O_(2)PDBD those that generate electric thrust at the outer edge of the electrode surface are mainly various oxygen-containing ions.展开更多
A two-dimensional fluid model based on COMSOL Multiphysics is developed to investigate the modulation of static magnetic field on plasma homogeneity in a capacitively coupled plasma(CCP)chamber. To generate a static m...A two-dimensional fluid model based on COMSOL Multiphysics is developed to investigate the modulation of static magnetic field on plasma homogeneity in a capacitively coupled plasma(CCP)chamber. To generate a static magnetic field, direct current is applied to a circular coil located at the top of the chamber. By adjusting the magnetic field's configuration, which is done by altering the coil current and position, both the plasma uniformity and density can be significantly modulated. In the absence of the magnetic field, the plasma density exhibits an inhomogeneous distribution characterized by higher values at the plasma edge and lower values at the center. The introduction of a magnetic field generated by coils results in a significant increase in electron density near the coils. Furthermore, an increase in the sets of coils improves the uniformity of the plasma. By flexibly adjusting the positions of the coils and the applied current,a substantial enhancement in overall uniformity can be achieved. These findings demonstrate the feasibility of using this method for achieving uniform plasma densities in industrial applications.展开更多
To maintain the high-density plasma source in inductively coupled plasma(ICP),very high radiofrequency power is often delivered to the antenna,which can heat the dielectric windows near the antenna to high temperature...To maintain the high-density plasma source in inductively coupled plasma(ICP),very high radiofrequency power is often delivered to the antenna,which can heat the dielectric windows near the antenna to high temperature.This high temperature can modulate the plasma characteristics to a large degree.We thus study the effect of dielectric window temperature on plasma parameters in two different ICP structures based on COMSOL software.The distributions of various plasma species are examined at different dielectric window temperatures.The concentration of neutral gas is found to be largely modulated at high dielectric window temperature,which further affects the electron collision probability with neutrals and the electron temperature.However,the electron density profiles are barely affected by the dielectric window temperature,which is mainly concentrated at the center of the reactor due to the fixed power input and pressure.展开更多
The conventional double-probe technique was improved with a combination of selfpowering and radio-frequency(RF) choking.RF perturbations in dual-frequency capacitively coupled discharge were effectively eliminated,a...The conventional double-probe technique was improved with a combination of selfpowering and radio-frequency(RF) choking.RF perturbations in dual-frequency capacitively coupled discharge were effectively eliminated,as judged by the disappearance of self-bias on the probes.The improved technique was tested by spatially resolved measurements of the electron temperature and ion density in both the axial and radial directions of a dual-frequency capacitive plasma.The measured data in the axial direction were compared with simulation results,and they were excellently consistent with each other.The measured radial distributions of the ion density and electron temperature were influenced significantly by the lower frequency(LF) power.It was shown that superposition of the lower frequency to the higher frequency(HF) power shifted the maximum ion density from the radial center to the edge region,while the trend for the electron temperature profile was the opposite.The changing feature of the ion density distribution is qualitatively consistent with that of the optical emission intensity reported.展开更多
Two classic radio-frequency(RF) plasmas, i.e., the capacitively and the inductively coupled plasmas(CCP and ICP),are widely employed in material processing, e.g., etching and thin film deposition, etc. Since RF plasma...Two classic radio-frequency(RF) plasmas, i.e., the capacitively and the inductively coupled plasmas(CCP and ICP),are widely employed in material processing, e.g., etching and thin film deposition, etc. Since RF plasmas are usually operated in particular circumstances, e.g., low pressures(m Torr-Torr), high-frequency electric field(13.56 MHz-200 MHz),reactive feedstock gases, diverse reactor configurations, etc., a variety of physical phenomena, e.g., electron resonance heating, discharge mode transitions, striated structures, standing wave effects, etc., arise. These physical effects could significantly influence plasma-based material processing. Therefore, understanding the fundamental processes of RF plasma is not only of fundamental interest, but also of practical significance for the improvement of the performance of the plasma sources. In this article, we review the major progresses that have been achieved in the fundamental study on the RF plasmas,and the topics include 1) electron heating mechanism, 2) plasma operation mode, 3) pulse modulated plasma, and 4) electromagnetic effects. These topics cover the typical issues in RF plasma field, ranging from fundamental to application.展开更多
A three-dimensional fluid model is developed to investigate the radio-frequency inductively coupled H2 plasma in a reactor with a rectangular expansion chamber and a cylindrical driver chamber,for neutral beam injecti...A three-dimensional fluid model is developed to investigate the radio-frequency inductively coupled H2 plasma in a reactor with a rectangular expansion chamber and a cylindrical driver chamber,for neutral beam injection system in CFETR.In this model,the electron effective collision frequency and the ion mobility at high E-fields are employed,for accurate simulation of discharges at low pressures(0.3 Pa-2 Pa)and high powers(40 kW-100 kW).The results indicate that when the high E-field ion mobility is taken into account,the electron density is about four times higher than the value in the low E-field case.In addition,the influences of the magnetic field,pressure and power on the electron density and electron temperature are demonstrated.It is found that the electron density and electron temperature in the xz-plane along permanent magnet side become much more asymmetric when magnetic field enhances.However,the plasma parameters in the yz-plane without permanent magnet side are symmetric no matter the magnetic field is applied or not.Besides,the maximum of the electron density first increases and then decreases with magnetic field,while the electron temperature at the bottom of the expansion region first decreases and then almost keeps constant.As the pressure increases from 0.3 Pa to 2 Pa,the electron density becomes higher,with the maximum moving upwards to the driver region,and the symmetry of the electron temperature in the xz-plane becomes much better.As power increases,the electron density rises,whereas the spatial distribution is similar.It can be summarized that the magnetic field and gas pressure have great influence on the symmetry of the plasma parameters,while the power only has little effect.展开更多
It is recognized that standing wave effects appearing in large-area,very-high-frequency capacitively coupled plasma(CCP)reactors cause center-high plasma non-uniformity.Using a high-frequency magnetic probe,we present...It is recognized that standing wave effects appearing in large-area,very-high-frequency capacitively coupled plasma(CCP)reactors cause center-high plasma non-uniformity.Using a high-frequency magnetic probe,we present a direct experimental diagnostic of the nonlinear standing waves and bulk ohmic electron power absorption dynamics in low pressure CCP discharges for different driving frequencies of 13.56,30,and 60 MHz.The design,principle,calibration,and validation of the probe are described in detail.Spatial structures of the harmonics of the magnetic field,determined by the magnetic probe,were used to calculate the distributions of the harmonic current and the corresponding ohmic electron power deposition,providing insights into the behavior of nonlinear harmonics.At a low driving frequency,i.e.13.56 MHz,no remarkable nonlinear standing waves were identified and the bulk ohmic electron power absorption was observed to be negligible.The harmonic magnetic field/current was found to increase dramatically with the driving frequency,due to decreased sheath reactance and more remarkable nonlinear standing waves at a higher driving frequency,leading to the enhancements of the ohmic heating and the plasma density in the bulk,specifically at the electrode center.At a high driving frequency,i.e.60 MHz,the high-order harmonic current density and the corresponding ohmic electron power absorption exhibited a similar node structure,with the main peak on axis,and one or more minor peaks between the electrode center and the edge,contributing to the center-high profile of the plasma density.展开更多
Pulse inductively coupled plasma has been widely used in the microelectronics industry,but the existence of overshoot phenomenon may affect the uniformity of plasma and generate high-energy ions,which could damage the...Pulse inductively coupled plasma has been widely used in the microelectronics industry,but the existence of overshoot phenomenon may affect the uniformity of plasma and generate high-energy ions,which could damage the chip.The overshoot phenomenon at various spatial locations in pulsed inductively coupled Ar and Ar/CF_(4) discharges is studied in this work.The electron density,effective electron temperature,relative light intensity,and electron energy probability function(EEPF) are measured by using a time-resolved Langmuir probe and an optical probe,as a function of axial and radial locations.At the initial stage of pulse,both electron density and relative light intensity exhibit overshoot phenomenon,i.e.,they first increase to a peak value and then decrease to a convergent value.The overshoot phenomenon gradually decays,when the probe moves away from the coils.Meanwhile,a delay appears in the variation of the electron densities,and the effective electron temperature decreases,which may be related to the reduced strength of electric field at a distance,and the consequent fewer high-energy electrons,inducing limited ionization and excitation rate.The overshoot phenomenon gradually disappears and the electron density decreases,when the probe moves away from reactor centre.In Ar/CF_(4) discharge,the overshoot phenomenon of electron density is weaker than that in the Ar discharge,and the plasma reaches a steady density within a much shorter time,which is probably due to the more ionization channels and lower ionization thresholds in the Ar/CF_(4) plasma.展开更多
基金financial support from the Interdisciplinary Fund of the Wuhan National High Magnetic Field Center (No. WHMFC202101)。
文摘The discharge morphology of pulsed dielectric barrier discharge(PDBD) plays important roles in its applications. Here, we systematically investigated the effects of the voltage amplitude,discharge gap, and O_(2)content on the PDBD morphology, and revealed the possible underlying mechanism of the U-shaped formation. First, the morphological evolution under different conditions was recorded. A unique U-shaped region appears in the middle edge region when the gap is larger than 2 mm, while the entire discharge region remains columnar under a 2 mm gap in He PDBD. The width of the discharge and the U-shaped region increase with the increase in voltage, and decrease with the increase of the gap and O_(2)content. To explain this phenomenon,a two-dimensional symmetric model was developed to simulate the spatiotemporal evolution of different species and calculate the electric thrust. The discharge morphology evolution directly corresponds to the excited-state atomic reduction process. The electric thrust on the charged particles mainly determines the reaction region and strongly influences the U-shaped formation.When the gap is less than 2 mm, the electric thrust is homogeneous throughout the entire region,resulting in a columnar shape. However, when the gap is larger than 2 mm or O_(2)is added, the electric thrust in the edge region becomes greater than that in the middle, leading to the U-shaped formation. Furthermore, in He PDBD, the charged particles generating electric thrust are mainly electrons and helium ions, while in He/O_(2)PDBD those that generate electric thrust at the outer edge of the electrode surface are mainly various oxygen-containing ions.
基金financially supported by the National MCF Energy R&D Program of China(No.2022YFE03190100)National Natural Science Foundation of China(Nos.11935005,12105035 and U21A20438)+2 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2021B1515120018)the Fundamental Research Funds for the Central Universities(No.DUT21TD104)the Advanced Space Propulsion Laboratory of BICE and Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology(No.Lab ASP-2020-01).
文摘A two-dimensional fluid model based on COMSOL Multiphysics is developed to investigate the modulation of static magnetic field on plasma homogeneity in a capacitively coupled plasma(CCP)chamber. To generate a static magnetic field, direct current is applied to a circular coil located at the top of the chamber. By adjusting the magnetic field's configuration, which is done by altering the coil current and position, both the plasma uniformity and density can be significantly modulated. In the absence of the magnetic field, the plasma density exhibits an inhomogeneous distribution characterized by higher values at the plasma edge and lower values at the center. The introduction of a magnetic field generated by coils results in a significant increase in electron density near the coils. Furthermore, an increase in the sets of coils improves the uniformity of the plasma. By flexibly adjusting the positions of the coils and the applied current,a substantial enhancement in overall uniformity can be achieved. These findings demonstrate the feasibility of using this method for achieving uniform plasma densities in industrial applications.
基金financially supported by National Natural Science Foundation of China(NSFC)(Nos.12105035 and 11935005)Guangdong Basic and Applied Basic Research Foundation(No.2021B1515120018)+1 种基金the Fundamental Research Funds for the Central Universities(No.DUT21TD104)the Advanced Space Propulsion Laboratory of BICE and Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology(No.Lab ASP-2020-01)。
文摘To maintain the high-density plasma source in inductively coupled plasma(ICP),very high radiofrequency power is often delivered to the antenna,which can heat the dielectric windows near the antenna to high temperature.This high temperature can modulate the plasma characteristics to a large degree.We thus study the effect of dielectric window temperature on plasma parameters in two different ICP structures based on COMSOL software.The distributions of various plasma species are examined at different dielectric window temperatures.The concentration of neutral gas is found to be largely modulated at high dielectric window temperature,which further affects the electron collision probability with neutrals and the electron temperature.However,the electron density profiles are barely affected by the dielectric window temperature,which is mainly concentrated at the center of the reactor due to the fixed power input and pressure.
基金supported by National Natural Science Foundation of China(No.10635010)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20090041110026)
文摘The conventional double-probe technique was improved with a combination of selfpowering and radio-frequency(RF) choking.RF perturbations in dual-frequency capacitively coupled discharge were effectively eliminated,as judged by the disappearance of self-bias on the probes.The improved technique was tested by spatially resolved measurements of the electron temperature and ion density in both the axial and radial directions of a dual-frequency capacitive plasma.The measured data in the axial direction were compared with simulation results,and they were excellently consistent with each other.The measured radial distributions of the ion density and electron temperature were influenced significantly by the lower frequency(LF) power.It was shown that superposition of the lower frequency to the higher frequency(HF) power shifted the maximum ion density from the radial center to the edge region,while the trend for the electron temperature profile was the opposite.The changing feature of the ion density distribution is qualitatively consistent with that of the optical emission intensity reported.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 11935005 and 11875100)。
文摘Two classic radio-frequency(RF) plasmas, i.e., the capacitively and the inductively coupled plasmas(CCP and ICP),are widely employed in material processing, e.g., etching and thin film deposition, etc. Since RF plasmas are usually operated in particular circumstances, e.g., low pressures(m Torr-Torr), high-frequency electric field(13.56 MHz-200 MHz),reactive feedstock gases, diverse reactor configurations, etc., a variety of physical phenomena, e.g., electron resonance heating, discharge mode transitions, striated structures, standing wave effects, etc., arise. These physical effects could significantly influence plasma-based material processing. Therefore, understanding the fundamental processes of RF plasma is not only of fundamental interest, but also of practical significance for the improvement of the performance of the plasma sources. In this article, we review the major progresses that have been achieved in the fundamental study on the RF plasmas,and the topics include 1) electron heating mechanism, 2) plasma operation mode, 3) pulse modulated plasma, and 4) electromagnetic effects. These topics cover the typical issues in RF plasma field, ranging from fundamental to application.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFE0300106)the National Natural Science Foundation of China(Grant No.12075049)the Fundamental Research Funds for the Central Universities,China(Grant Nos.DUT20LAB201 and DUT21LAB110).
文摘A three-dimensional fluid model is developed to investigate the radio-frequency inductively coupled H2 plasma in a reactor with a rectangular expansion chamber and a cylindrical driver chamber,for neutral beam injection system in CFETR.In this model,the electron effective collision frequency and the ion mobility at high E-fields are employed,for accurate simulation of discharges at low pressures(0.3 Pa-2 Pa)and high powers(40 kW-100 kW).The results indicate that when the high E-field ion mobility is taken into account,the electron density is about four times higher than the value in the low E-field case.In addition,the influences of the magnetic field,pressure and power on the electron density and electron temperature are demonstrated.It is found that the electron density and electron temperature in the xz-plane along permanent magnet side become much more asymmetric when magnetic field enhances.However,the plasma parameters in the yz-plane without permanent magnet side are symmetric no matter the magnetic field is applied or not.Besides,the maximum of the electron density first increases and then decreases with magnetic field,while the electron temperature at the bottom of the expansion region first decreases and then almost keeps constant.As the pressure increases from 0.3 Pa to 2 Pa,the electron density becomes higher,with the maximum moving upwards to the driver region,and the symmetry of the electron temperature in the xz-plane becomes much better.As power increases,the electron density rises,whereas the spatial distribution is similar.It can be summarized that the magnetic field and gas pressure have great influence on the symmetry of the plasma parameters,while the power only has little effect.
基金financially supported by National Natural Science Foundation of China(NSFC)(Nos.12005035 and 11935005)China Postdoctoral Science Foundation(Nos.2020M670741 and 2021T140085)+2 种基金Fundamental Research Funds for the Central Universities(No.DUT20LAB201)National Science Foundation(No.PHY-1500518)Department of Energy Office of Fusion Energy Science(No.DE-SC0001939)for financial support。
文摘It is recognized that standing wave effects appearing in large-area,very-high-frequency capacitively coupled plasma(CCP)reactors cause center-high plasma non-uniformity.Using a high-frequency magnetic probe,we present a direct experimental diagnostic of the nonlinear standing waves and bulk ohmic electron power absorption dynamics in low pressure CCP discharges for different driving frequencies of 13.56,30,and 60 MHz.The design,principle,calibration,and validation of the probe are described in detail.Spatial structures of the harmonics of the magnetic field,determined by the magnetic probe,were used to calculate the distributions of the harmonic current and the corresponding ohmic electron power deposition,providing insights into the behavior of nonlinear harmonics.At a low driving frequency,i.e.13.56 MHz,no remarkable nonlinear standing waves were identified and the bulk ohmic electron power absorption was observed to be negligible.The harmonic magnetic field/current was found to increase dramatically with the driving frequency,due to decreased sheath reactance and more remarkable nonlinear standing waves at a higher driving frequency,leading to the enhancements of the ohmic heating and the plasma density in the bulk,specifically at the electrode center.At a high driving frequency,i.e.60 MHz,the high-order harmonic current density and the corresponding ohmic electron power absorption exhibited a similar node structure,with the main peak on axis,and one or more minor peaks between the electrode center and the edge,contributing to the center-high profile of the plasma density.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11675039,11875101,11935005,and 12075049)the Fundamental Research Funds for the Central Universities of China(Grant Nos.DUT18TD06 and DUT20LAB201)。
文摘Pulse inductively coupled plasma has been widely used in the microelectronics industry,but the existence of overshoot phenomenon may affect the uniformity of plasma and generate high-energy ions,which could damage the chip.The overshoot phenomenon at various spatial locations in pulsed inductively coupled Ar and Ar/CF_(4) discharges is studied in this work.The electron density,effective electron temperature,relative light intensity,and electron energy probability function(EEPF) are measured by using a time-resolved Langmuir probe and an optical probe,as a function of axial and radial locations.At the initial stage of pulse,both electron density and relative light intensity exhibit overshoot phenomenon,i.e.,they first increase to a peak value and then decrease to a convergent value.The overshoot phenomenon gradually decays,when the probe moves away from the coils.Meanwhile,a delay appears in the variation of the electron densities,and the effective electron temperature decreases,which may be related to the reduced strength of electric field at a distance,and the consequent fewer high-energy electrons,inducing limited ionization and excitation rate.The overshoot phenomenon gradually disappears and the electron density decreases,when the probe moves away from reactor centre.In Ar/CF_(4) discharge,the overshoot phenomenon of electron density is weaker than that in the Ar discharge,and the plasma reaches a steady density within a much shorter time,which is probably due to the more ionization channels and lower ionization thresholds in the Ar/CF_(4) plasma.