Antiferromagnet(AFM)/ferromagnet(FM)heterostructure is a popular system for studying the spin–orbit torque(SOT)of AFMs.However,the interfacial exchange bias field induces that the magnetization in FM layer is noncoll...Antiferromagnet(AFM)/ferromagnet(FM)heterostructure is a popular system for studying the spin–orbit torque(SOT)of AFMs.However,the interfacial exchange bias field induces that the magnetization in FM layer is noncollinear to the external magnetic field,namely the magnetic moment drag effect,which further influences the characteristic of SOT efficiency.In this work,we study the SOT efficiencies of IrMn/NiFe bilayers with strong interfacial exchange bias by using spin-torque ferromagnetic resonance(ST-FMR)method.A full analysis on the AFM/FM systems with exchange bias is performed,and the angular dependence of magnetization on external magnetic field is determined through the minimum rule of free energy.The ST-FMR results can be well fitted by this model.We obtained the relative accurate SOT efficiencyξ_(DL)=0.058 for the IrMn film.This work provides a useful method to analyze the angular dependence of ST-FMR results and facilitates the accurate measurement of SOT efficiency for the AFM/FM heterostructures with strong exchange bias.展开更多
As a microwave generator, spin transfer nano-oscillator(STNO) based on skyrmion promises to become one of the next-generation spintronic devices. However, there still exist a few limitations to the practical applicati...As a microwave generator, spin transfer nano-oscillator(STNO) based on skyrmion promises to become one of the next-generation spintronic devices. However, there still exist a few limitations to the practical applications. In this paper, we propose a new STNO based on synthetic antiferromagnetic(SAF) skyrmion pair assisted by a perpendicular fixed magnetic field. It is found that the oscillation frequency of this kind of STNO can reach up to 5.0 GHz, and the multiple oscillation peak with higher frequency can be realized under a fixed out-of-plane magnetic field. Further investigation shows that the skyrmion stability is improved by bilayer antiferromagnetic coupling, which guarantees the stability process of skyrmion under higher spin-polarized current density. Our results provide the alternative possibilities for designing new skyrmionbased STNO to further improve the oscillation frequency, and realize the output of multiple frequency microwave signal.展开更多
An interlayer perpendicular standing spin wave mode is observed in the skyrmion-hosting[Pt/Co/Ta]_(10) multilayer by measuring the time-resolved magneto-optical Kerr effect.The observed interlayer mode depends on the ...An interlayer perpendicular standing spin wave mode is observed in the skyrmion-hosting[Pt/Co/Ta]_(10) multilayer by measuring the time-resolved magneto-optical Kerr effect.The observed interlayer mode depends on the interlayer spin-pumping and spin transfer torque among the neighboring Co layers.This mode shows monotonically increasing frequency-field dependence which is similar to the ferromagnetic resonance mode,but within higher frequency range.Besides,the damping of the interlayer mode is found to be a relatively low constant value of 0.027 which is independent of the external field.This work expounds the potential application of the[heavy-metal/ferromagnetic-metal]_(n) multilayers to skyrmion-based magnonic devices which can provide multiple magnon modes,relatively low damping,and skyrmion states,simultaneously.展开更多
We investigated the angle-dependent spin wave spectra of permalloy ring arrays with the fixed outer diameter and various inner diameters by ferromagnetic resonance spectroscopy and micromagnetic simulation.When the fi...We investigated the angle-dependent spin wave spectra of permalloy ring arrays with the fixed outer diameter and various inner diameters by ferromagnetic resonance spectroscopy and micromagnetic simulation.When the field is obliquely applied to the ring,local resonance mode can be observed in different parts of the rings.And the resonance mode will change to perpendicular spin standing waves if the magnetic field is applied along the perpendicular direction.The simulation results demonstrated this evolution and implied more resonance modes that maybe exist.And the mathematical fitting results based on the Kittel equation further proved the existence of local resonance mode.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFB3601300)the National Natural Science Foundation of China(Grant Nos.52201290,12074158,and 12174166)the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2022-kb01)。
文摘Antiferromagnet(AFM)/ferromagnet(FM)heterostructure is a popular system for studying the spin–orbit torque(SOT)of AFMs.However,the interfacial exchange bias field induces that the magnetization in FM layer is noncollinear to the external magnetic field,namely the magnetic moment drag effect,which further influences the characteristic of SOT efficiency.In this work,we study the SOT efficiencies of IrMn/NiFe bilayers with strong interfacial exchange bias by using spin-torque ferromagnetic resonance(ST-FMR)method.A full analysis on the AFM/FM systems with exchange bias is performed,and the angular dependence of magnetization on external magnetic field is determined through the minimum rule of free energy.The ST-FMR results can be well fitted by this model.We obtained the relative accurate SOT efficiencyξ_(DL)=0.058 for the IrMn film.This work provides a useful method to analyze the angular dependence of ST-FMR results and facilitates the accurate measurement of SOT efficiency for the AFM/FM heterostructures with strong exchange bias.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12074158, 12174166, 12104197, and 12104124)the Natural Science Foundation of Hebei Province, China (Grant No. A2021201008)。
文摘As a microwave generator, spin transfer nano-oscillator(STNO) based on skyrmion promises to become one of the next-generation spintronic devices. However, there still exist a few limitations to the practical applications. In this paper, we propose a new STNO based on synthetic antiferromagnetic(SAF) skyrmion pair assisted by a perpendicular fixed magnetic field. It is found that the oscillation frequency of this kind of STNO can reach up to 5.0 GHz, and the multiple oscillation peak with higher frequency can be realized under a fixed out-of-plane magnetic field. Further investigation shows that the skyrmion stability is improved by bilayer antiferromagnetic coupling, which guarantees the stability process of skyrmion under higher spin-polarized current density. Our results provide the alternative possibilities for designing new skyrmionbased STNO to further improve the oscillation frequency, and realize the output of multiple frequency microwave signal.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12074189,11704191,11774160,and 61427812)the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK20192006 and BK20211144)the Postdoctoral Research Funding Program of Jiangsu Province,China(Grant No.2021K503C)。
文摘An interlayer perpendicular standing spin wave mode is observed in the skyrmion-hosting[Pt/Co/Ta]_(10) multilayer by measuring the time-resolved magneto-optical Kerr effect.The observed interlayer mode depends on the interlayer spin-pumping and spin transfer torque among the neighboring Co layers.This mode shows monotonically increasing frequency-field dependence which is similar to the ferromagnetic resonance mode,but within higher frequency range.Besides,the damping of the interlayer mode is found to be a relatively low constant value of 0.027 which is independent of the external field.This work expounds the potential application of the[heavy-metal/ferromagnetic-metal]_(n) multilayers to skyrmion-based magnonic devices which can provide multiple magnon modes,relatively low damping,and skyrmion states,simultaneously.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12074158,12174166,and 12104197)。
文摘We investigated the angle-dependent spin wave spectra of permalloy ring arrays with the fixed outer diameter and various inner diameters by ferromagnetic resonance spectroscopy and micromagnetic simulation.When the field is obliquely applied to the ring,local resonance mode can be observed in different parts of the rings.And the resonance mode will change to perpendicular spin standing waves if the magnetic field is applied along the perpendicular direction.The simulation results demonstrated this evolution and implied more resonance modes that maybe exist.And the mathematical fitting results based on the Kittel equation further proved the existence of local resonance mode.