为了改善音圈电机驱动系统的动态性能,课题组提出了一种全局自适应非奇异快速终端滑模控制策略。在非奇异快速终端滑模控制器的基础上,引入全局滑态因子,改善系统的瞬态响应;同时将自适应控制和非奇异快速终端滑模控制相结合,利用自适...为了改善音圈电机驱动系统的动态性能,课题组提出了一种全局自适应非奇异快速终端滑模控制策略。在非奇异快速终端滑模控制器的基础上,引入全局滑态因子,改善系统的瞬态响应;同时将自适应控制和非奇异快速终端滑模控制相结合,利用自适应控制可以根据系统的实时状态和外部干扰自动调整参数的特点,来减小扰动、提高系统的鲁棒性和抗干扰性;将控制律中的符号函数改为一种边界层的饱和函数来削弱振动;通过李亚普诺夫稳定性理论证明所提出的控制器的稳定性;最后,将全局自适应非奇异快速终端滑模控制与比例积分微分控制(proportional integral derivative,PID)和滑模控制(sliding mode control,SMC)进行仿真对比。结果表明:与PID控制和滑模控制相比,所提出的全局自适应非奇异快速终端滑模控制提高了系统的动态响应速度和控制精度,有效改善了系统的动态性能。展开更多
为了提高伺服电机系统的动态响应速度、抗干扰能力,解决输入饱和的问题,课题组基于扩张状态观测器(extended state observer,ESO)和抗饱和输入(anti-saturation input,ASI)辅助系统设计了伺服电机的运动控制方案。首先,建立了伺服电机...为了提高伺服电机系统的动态响应速度、抗干扰能力,解决输入饱和的问题,课题组基于扩张状态观测器(extended state observer,ESO)和抗饱和输入(anti-saturation input,ASI)辅助系统设计了伺服电机的运动控制方案。首先,建立了伺服电机的数学模型,将系统阻尼和系统不确定性归为扰动,将扰动设为系统的扩张状态;然后在等效反步滑模控制(backstepping sliding mode control,BSMC)的基础上,引入了ASI辅助系统和ESO,解决输入饱和问题,并抑制内、外干扰;采用双曲正切饱和函数替换符号函数以减小滑模控制的抖振;通过李雅普诺夫稳定性方法检验所提出控制器的稳定性。最后,将基于ESO和ASI的等效反步滑模控制与比例积分微分(proportional integral differential,PID)控制、滑模控制(sliding mode control,SMC)进行仿真对比。结果表明:相较于传统PID和SMC控制器,课题组所设计的控制器可以实现伺服电机的无超调快速响应,解决了输入饱和问题,并具有较好的抗干扰能力和减小输入冲击的作用。展开更多
文摘为了改善音圈电机驱动系统的动态性能,课题组提出了一种全局自适应非奇异快速终端滑模控制策略。在非奇异快速终端滑模控制器的基础上,引入全局滑态因子,改善系统的瞬态响应;同时将自适应控制和非奇异快速终端滑模控制相结合,利用自适应控制可以根据系统的实时状态和外部干扰自动调整参数的特点,来减小扰动、提高系统的鲁棒性和抗干扰性;将控制律中的符号函数改为一种边界层的饱和函数来削弱振动;通过李亚普诺夫稳定性理论证明所提出的控制器的稳定性;最后,将全局自适应非奇异快速终端滑模控制与比例积分微分控制(proportional integral derivative,PID)和滑模控制(sliding mode control,SMC)进行仿真对比。结果表明:与PID控制和滑模控制相比,所提出的全局自适应非奇异快速终端滑模控制提高了系统的动态响应速度和控制精度,有效改善了系统的动态性能。