由东南大学和江苏大学联合主办、东南大学承办的哈密顿系统与变分方法国际研讨会(Interna—tional Conference on Hamiltonian System and Varia-tional Method)于2015年5月30—31日在东南大学成功举办。本次研讨会邀请到美国、加拿...由东南大学和江苏大学联合主办、东南大学承办的哈密顿系统与变分方法国际研讨会(Interna—tional Conference on Hamiltonian System and Varia-tional Method)于2015年5月30—31日在东南大学成功举办。本次研讨会邀请到美国、加拿大等地的重要国际学术专家和国内的中国科学院、南京大学、南开大学、复旦大学等科研院所的专家总共80余人参会。该领域的顶级专家,展开更多
This paper concerns the existence of multiple homoclinic orbits for the second-order Hamiltonian system-L(t)z+Wz(t,z)=0,where L∈C(R,RN2)is a symmetric matrix-valued function and W(t,z)∈C1(R×RN,R)is a...This paper concerns the existence of multiple homoclinic orbits for the second-order Hamiltonian system-L(t)z+Wz(t,z)=0,where L∈C(R,RN2)is a symmetric matrix-valued function and W(t,z)∈C1(R×RN,R)is a nonlinear term.Since there are no periodic assumptions on L(t)and W(t,z)in t,one should overcome difficulties for the lack of compactness of the Sobolev embedding.Moreover,the nonlinearity W(t,z)is asymptotically linear in z at infinity and the system is allowed to be resonant,which is a case that has never been considered before.By virtue of some generalized mountain pass theorem,multiple homoclinic orbits are obtained.展开更多
The existence of high energy periodic solutions for the second-order Hamiltonian system -ü(t)+A(t)u(t)=▽F(t,u(t)) with convex and concave nonlinearities is studied, where F(t, u) = F1(t,u)+F2(t,...The existence of high energy periodic solutions for the second-order Hamiltonian system -ü(t)+A(t)u(t)=▽F(t,u(t)) with convex and concave nonlinearities is studied, where F(t, u) = F1(t,u)+F2(t,u). Under the condition that F is an even functional, infinitely many solutions for it are obtained by the variant fountain theorem. The result is a complement for some known ones in the critical point theory.展开更多
For a class of asymptotically periodic quasilinear Schr?dinger equations with critical growth the existence of ground states is proved.First applying a change of variables the quasilinear Schr?dinger equations are r...For a class of asymptotically periodic quasilinear Schr?dinger equations with critical growth the existence of ground states is proved.First applying a change of variables the quasilinear Schr?dinger equations are reduced to semilinear Schr?dinger equations in which the corresponding functional is well defined in H1 RN .Moreover there is a one-to-one correspondence between ground states of the semilinear Schr?dinger equations and the quasilinear Schr?dinger equations.Then the mountain-pass theorem is used to find nontrivial solutions for the semilinear Schr?dinger equations. Finally under certain monotonicity conditions using the Nehari manifold method and the concentration compactness principle the nontrivial solutions are found to be exactly the same as the ground states of the semilinear Schr?dinger equations.展开更多
文摘由东南大学和江苏大学联合主办、东南大学承办的哈密顿系统与变分方法国际研讨会(Interna—tional Conference on Hamiltonian System and Varia-tional Method)于2015年5月30—31日在东南大学成功举办。本次研讨会邀请到美国、加拿大等地的重要国际学术专家和国内的中国科学院、南京大学、南开大学、复旦大学等科研院所的专家总共80余人参会。该领域的顶级专家,
文摘This paper concerns the existence of multiple homoclinic orbits for the second-order Hamiltonian system-L(t)z+Wz(t,z)=0,where L∈C(R,RN2)is a symmetric matrix-valued function and W(t,z)∈C1(R×RN,R)is a nonlinear term.Since there are no periodic assumptions on L(t)and W(t,z)in t,one should overcome difficulties for the lack of compactness of the Sobolev embedding.Moreover,the nonlinearity W(t,z)is asymptotically linear in z at infinity and the system is allowed to be resonant,which is a case that has never been considered before.By virtue of some generalized mountain pass theorem,multiple homoclinic orbits are obtained.
文摘The existence of high energy periodic solutions for the second-order Hamiltonian system -ü(t)+A(t)u(t)=▽F(t,u(t)) with convex and concave nonlinearities is studied, where F(t, u) = F1(t,u)+F2(t,u). Under the condition that F is an even functional, infinitely many solutions for it are obtained by the variant fountain theorem. The result is a complement for some known ones in the critical point theory.
基金The Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXLX_0069)
文摘For a class of asymptotically periodic quasilinear Schr?dinger equations with critical growth the existence of ground states is proved.First applying a change of variables the quasilinear Schr?dinger equations are reduced to semilinear Schr?dinger equations in which the corresponding functional is well defined in H1 RN .Moreover there is a one-to-one correspondence between ground states of the semilinear Schr?dinger equations and the quasilinear Schr?dinger equations.Then the mountain-pass theorem is used to find nontrivial solutions for the semilinear Schr?dinger equations. Finally under certain monotonicity conditions using the Nehari manifold method and the concentration compactness principle the nontrivial solutions are found to be exactly the same as the ground states of the semilinear Schr?dinger equations.