We present the joint probability density function(PDF) between the bucket signals and reference signals in thermal light ghost imaging, by regarding these signals as stochastic variables. The joint PDF allows us to ex...We present the joint probability density function(PDF) between the bucket signals and reference signals in thermal light ghost imaging, by regarding these signals as stochastic variables. The joint PDF allows us to examine the fractional-order moments of the bucket and the reference signals, in which the correlation orders are fractional numbers,other than positive integers in previous studies. The experimental results show that various images can be reconstructed from fractional-order moments. Negative(positive) ghost images are obtained with negative(positive) orders of the bucket signals. The visibility and peak signal-to-noise ratios of the diverse ghost images depend greatly on the fractional orders.展开更多
We propose a method of complex-amplitude Fourier single-pixel imaging(CFSI)with coherent structured illumination to acquire both the amplitude and phase of an object.In the proposed method,an object is illustrated by ...We propose a method of complex-amplitude Fourier single-pixel imaging(CFSI)with coherent structured illumination to acquire both the amplitude and phase of an object.In the proposed method,an object is illustrated by a series of coherent structured light fields,which are generated by a phase-only spatial light modulator,the complex Fourier spectrum of the object can be acquired sequentially by a single-pixel photodetector.Then the desired complex-amplitude image can be retrieved directly by applying an inverse Fourier transform.We experimentally implemented this CFSI with several different types of objects.The experimental results show that the proposed method provides a promising complex-amplitude imaging approach with high quality and a stable configuration.Thus,it might find broad applications in optical metrology and biomedical science.展开更多
We report an experimental observation of Poisson's spot with pseudo-thermal light. The experimental results show that the diffraction pattern disappears in the intensity distribution behind the opaque disc but emerge...We report an experimental observation of Poisson's spot with pseudo-thermal light. The experimental results show that the diffraction pattern disappears in the intensity distribution behind the opaque disc but emerges through both auto-correlation and cross-correlation intensity measurements. The auto-correlation scheme can take care of both better visibility and higher resolution of the diffraction pattern under the condition that the thermal light source has a larger spectral bandwidth.展开更多
A pseudo-white-thermM light source is prepared by projecting three (red, green, and blue) laser beams onto a rotating ground glass disk. Based on the RGB color model, we investigate the color Hanbury-Brown Twiss (H...A pseudo-white-thermM light source is prepared by projecting three (red, green, and blue) laser beams onto a rotating ground glass disk. Based on the RGB color model, we investigate the color Hanbury-Brown Twiss (HI)T) effect and color ghost imaging with thermal light. The color HBT effect indicates that photons of the same color will bunch. This fact ensures the chromatic discrimination power of ghost imaging with thermM light. We retrieve the RGB ingredients of the object through intensity correlation measurements. A method of white balance to properly form the ghost images is proposed,展开更多
We establish a quantum theory of computational ghost imaging and propose quantum projection imaging where object information can be reconstructed by quantum statistical correlation between a certain photon number of a...We establish a quantum theory of computational ghost imaging and propose quantum projection imaging where object information can be reconstructed by quantum statistical correlation between a certain photon number of a bucket signal and digital micromirror device random patterns. The reconstructed image can be negative or positive, depending on the chosen photon number. In particular, the vacuum state (zero-number) projection produces a negative image with better visibility and contrast-to-noise ratio. The experimental results of quantum projection imaging agree well with theoretical simulations and show that, under the same measurement condition, vacuum projection imaging is superior to conventional and fast first-photon ghost imaging in low-light illumination.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11674273,11304016,and 11204062)
文摘We present the joint probability density function(PDF) between the bucket signals and reference signals in thermal light ghost imaging, by regarding these signals as stochastic variables. The joint PDF allows us to examine the fractional-order moments of the bucket and the reference signals, in which the correlation orders are fractional numbers,other than positive integers in previous studies. The experimental results show that various images can be reconstructed from fractional-order moments. Negative(positive) ghost images are obtained with negative(positive) orders of the bucket signals. The visibility and peak signal-to-noise ratios of the diverse ghost images depend greatly on the fractional orders.
基金Project supported by the Natural Science Foundation of Hebei Province,China(Grant Nos.A2022201039 and F2019201446)the MultiYear Research Grant of University of Macao,China(Grant No.MYRG2020-00082-IAPME)+2 种基金the Science and Technology Development Fund from Macao SAR(FDCT),China(Grant No.0062/2020/AMJ)the Advanced Talents Incubation Program of the Hebei University(Grant No.8012605)the National Natural Science Foundation of China(Grant Nos.11204062,61774053,and 11674273)。
文摘We propose a method of complex-amplitude Fourier single-pixel imaging(CFSI)with coherent structured illumination to acquire both the amplitude and phase of an object.In the proposed method,an object is illustrated by a series of coherent structured light fields,which are generated by a phase-only spatial light modulator,the complex Fourier spectrum of the object can be acquired sequentially by a single-pixel photodetector.Then the desired complex-amplitude image can be retrieved directly by applying an inverse Fourier transform.We experimentally implemented this CFSI with several different types of objects.The experimental results show that the proposed method provides a promising complex-amplitude imaging approach with high quality and a stable configuration.Thus,it might find broad applications in optical metrology and biomedical science.
基金Supported by the National Basic Research Programme of China under Grant No 2006CB921404, and the National Natural Science Foundation of China under Grant No 10574015.
文摘We report an experimental observation of Poisson's spot with pseudo-thermal light. The experimental results show that the diffraction pattern disappears in the intensity distribution behind the opaque disc but emerges through both auto-correlation and cross-correlation intensity measurements. The auto-correlation scheme can take care of both better visibility and higher resolution of the diffraction pattern under the condition that the thermal light source has a larger spectral bandwidth.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11047004,11204062 and 11174038the National High-Technology Research and Development Program of China under Grant No 2013AA122902the Youth Foundation of Hebei Educational Committee under Grant No QN2014086
文摘A pseudo-white-thermM light source is prepared by projecting three (red, green, and blue) laser beams onto a rotating ground glass disk. Based on the RGB color model, we investigate the color Hanbury-Brown Twiss (HI)T) effect and color ghost imaging with thermal light. The color HBT effect indicates that photons of the same color will bunch. This fact ensures the chromatic discrimination power of ghost imaging with thermM light. We retrieve the RGB ingredients of the object through intensity correlation measurements. A method of white balance to properly form the ghost images is proposed,
基金financially supported by the National Natural Science Foundation of China (Nos.12274037 and 11674273)the Natural Science Foundation of Hebei Province (No.A202220103)。
文摘We establish a quantum theory of computational ghost imaging and propose quantum projection imaging where object information can be reconstructed by quantum statistical correlation between a certain photon number of a bucket signal and digital micromirror device random patterns. The reconstructed image can be negative or positive, depending on the chosen photon number. In particular, the vacuum state (zero-number) projection produces a negative image with better visibility and contrast-to-noise ratio. The experimental results of quantum projection imaging agree well with theoretical simulations and show that, under the same measurement condition, vacuum projection imaging is superior to conventional and fast first-photon ghost imaging in low-light illumination.