Many observed data show that the near-bed tidal velocity profile deviates from the usual logarithmic law. The amount of deviation may not be large, but it results in large errors when the logarithmic velocity profile ...Many observed data show that the near-bed tidal velocity profile deviates from the usual logarithmic law. The amount of deviation may not be large, but it results in large errors when the logarithmic velocity profile is used to calculate the bed roughness height and friction velocity (or shear stress). Based on their investigation, Kuo et al. (1996) indicate that the deviation amplitude may exceed 100%. On the basis of fluid dynamic principle, the profile of the near-bed tidal velocity in estuarine and coastal waters is established by introducing Prandtl' s mixing length theory and Von Kannan selfsimilarity theory. By the fitting and calculation of the near-bed velocity profde data observed in the west Solent, England, the results are compared with those of the usual logarithmic model, and it is shown that the present near-bed tidal velocity profile model has such advantages as higher fitting precision, and better inner consistency between the roughness height and friction velocity. The calculated roughness height and friction velocity are closer to reality. The conclusions are validated that the logarithmic model underestimates the roughness height and friction velocity during tidal acceleration and overestimates them during tidal deceleration.展开更多
Based on the one-dimensional salinity transport equation with constant diffusion coefficient, and separated water flow velocity into runoff and tidal current with the single-frequency in an idealized estuary, the simp...Based on the one-dimensional salinity transport equation with constant diffusion coefficient, and separated water flow velocity into runoff and tidal current with the single-frequency in an idealized estuary, the simplest unsteady analytical so- lution of salinity intrusion is deduced and the estimation formula of diffusion coefficient is obtained in this paper. The unsteady solution indicates that salinity process in estuaries results from the interaction of runoff and tidal current, and its amplitude is in direct proportion to the product of the velocity of runoff water and the amplitude of tidal flow velocity and in inverse proportion to the diffusion coefficient and the tidal angular frequency, and its phase lag tidal flow with 7/2 which reveals the basic features of the maximum salinity appearing after flood slack and the minimum salinity appearing before ebb slack under the effect of runoff (the advance or lag time is relative to the magnitude of runoff and tidal flow). According to the measured flow velocity and salinity data, the salinity diffusion coefficient could be estimated. Finally, with the field data of observing sites on the deepwater navigation channel of the Yangtze Estuary, the diffusion coefficient is calculated and a comparative analysis of simulated and measured of salinity process is made. The results show that the solution can comprehensively reflects the basic characteristics and processes of salinity intrusion under the interaction of runoff and tidal flow in estuaries. The solution is not only suitable for theoretical research, but also convenient for estimating reasonable physical parameters and giving the initial condition in the salinity intrusion numerical simulation.展开更多
To study the Taiwan Strait (TS), an unusual sea area, the numerical model in marginal seas of China is used to simulate and analyze the tidal wave motion in the strait. The numerical modeling experiments reproduce t...To study the Taiwan Strait (TS), an unusual sea area, the numerical model in marginal seas of China is used to simulate and analyze the tidal wave motion in the strait. The numerical modeling experiments reproduce the amphidromic system of the M2 tide in the south end of the Taiwan strait, and consequently confirm the existence of the degenerate amphidromic system. On this basis, further discussion is conducted on the M2 system and its formation mechanism. It can be concluded that the tidal waves of the TS is consisted of the progressing wave from the north entrance and the degenerate amphidromic system from the south entrance, in which the progressing wave from the north entrance dominates the tidal wave motion in the strait. Except for the convergent effect caused by the landform and boundary, the degenerate amphidromic system produced in the south of the strait is another important factor for the following phenomena: the large tidal range in the middle of the strait, the concentrative zone of co-amplitude and co-phase line in the south of the strait. The degenerate amphidromic system is mainly produced by the incident Pacific Ocean tidal wave from the Luzon strait and the action by the shoreline and landform. The position of the amphidromic point is compelled to move toward southwest until degenerating by the powerful progressing wave from the north entrance.展开更多
基金This study was supported by the National Natural Science Foundation of China ( Grant Nos .40476039 and50339010) Specialized Research Fundforthe Doctoral Programof Higher Education (Grant No.20020294007)
文摘Many observed data show that the near-bed tidal velocity profile deviates from the usual logarithmic law. The amount of deviation may not be large, but it results in large errors when the logarithmic velocity profile is used to calculate the bed roughness height and friction velocity (or shear stress). Based on their investigation, Kuo et al. (1996) indicate that the deviation amplitude may exceed 100%. On the basis of fluid dynamic principle, the profile of the near-bed tidal velocity in estuarine and coastal waters is established by introducing Prandtl' s mixing length theory and Von Kannan selfsimilarity theory. By the fitting and calculation of the near-bed velocity profde data observed in the west Solent, England, the results are compared with those of the usual logarithmic model, and it is shown that the present near-bed tidal velocity profile model has such advantages as higher fitting precision, and better inner consistency between the roughness height and friction velocity. The calculated roughness height and friction velocity are closer to reality. The conclusions are validated that the logarithmic model underestimates the roughness height and friction velocity during tidal acceleration and overestimates them during tidal deceleration.
基金The research is partly supported by the Key Project of National Natural Science Foundation of China (Grant No.50339010)
文摘Based on the one-dimensional salinity transport equation with constant diffusion coefficient, and separated water flow velocity into runoff and tidal current with the single-frequency in an idealized estuary, the simplest unsteady analytical so- lution of salinity intrusion is deduced and the estimation formula of diffusion coefficient is obtained in this paper. The unsteady solution indicates that salinity process in estuaries results from the interaction of runoff and tidal current, and its amplitude is in direct proportion to the product of the velocity of runoff water and the amplitude of tidal flow velocity and in inverse proportion to the diffusion coefficient and the tidal angular frequency, and its phase lag tidal flow with 7/2 which reveals the basic features of the maximum salinity appearing after flood slack and the minimum salinity appearing before ebb slack under the effect of runoff (the advance or lag time is relative to the magnitude of runoff and tidal flow). According to the measured flow velocity and salinity data, the salinity diffusion coefficient could be estimated. Finally, with the field data of observing sites on the deepwater navigation channel of the Yangtze Estuary, the diffusion coefficient is calculated and a comparative analysis of simulated and measured of salinity process is made. The results show that the solution can comprehensively reflects the basic characteristics and processes of salinity intrusion under the interaction of runoff and tidal flow in estuaries. The solution is not only suitable for theoretical research, but also convenient for estimating reasonable physical parameters and giving the initial condition in the salinity intrusion numerical simulation.
文摘To study the Taiwan Strait (TS), an unusual sea area, the numerical model in marginal seas of China is used to simulate and analyze the tidal wave motion in the strait. The numerical modeling experiments reproduce the amphidromic system of the M2 tide in the south end of the Taiwan strait, and consequently confirm the existence of the degenerate amphidromic system. On this basis, further discussion is conducted on the M2 system and its formation mechanism. It can be concluded that the tidal waves of the TS is consisted of the progressing wave from the north entrance and the degenerate amphidromic system from the south entrance, in which the progressing wave from the north entrance dominates the tidal wave motion in the strait. Except for the convergent effect caused by the landform and boundary, the degenerate amphidromic system produced in the south of the strait is another important factor for the following phenomena: the large tidal range in the middle of the strait, the concentrative zone of co-amplitude and co-phase line in the south of the strait. The degenerate amphidromic system is mainly produced by the incident Pacific Ocean tidal wave from the Luzon strait and the action by the shoreline and landform. The position of the amphidromic point is compelled to move toward southwest until degenerating by the powerful progressing wave from the north entrance.