数据缺失在各个研究领域中普遍存在,缺失的数据会对计算的性能与结果产生严重的影响。为提高填补缺失数据的准确度,提出一种基于聚类分析的缺失数据最近邻填补算法。该算法在对数据聚类分析后根据类别分配权重,在MGNN(MahalanobisGray a...数据缺失在各个研究领域中普遍存在,缺失的数据会对计算的性能与结果产生严重的影响。为提高填补缺失数据的准确度,提出一种基于聚类分析的缺失数据最近邻填补算法。该算法在对数据聚类分析后根据类别分配权重,在MGNN(MahalanobisGray and Nearest Neighbor)算法的基础上改进了计算方法和填充值的计算方式。实验结果表明,该方法填补的准确度比传统KNN和MGNN算法要高。展开更多
文摘数据缺失在各个研究领域中普遍存在,缺失的数据会对计算的性能与结果产生严重的影响。为提高填补缺失数据的准确度,提出一种基于聚类分析的缺失数据最近邻填补算法。该算法在对数据聚类分析后根据类别分配权重,在MGNN(MahalanobisGray and Nearest Neighbor)算法的基础上改进了计算方法和填充值的计算方式。实验结果表明,该方法填补的准确度比传统KNN和MGNN算法要高。