This paper describes a new framework for object detection and tracking of AUV including underwater acoustic data interpolation, underwater acoustic images segmentation and underwater objects tracking. This framework i...This paper describes a new framework for object detection and tracking of AUV including underwater acoustic data interpolation, underwater acoustic images segmentation and underwater objects tracking. This framework is applied to the design of vision-based method for AUV based on the forward looking sonar sensor. First, the real-time data flow (underwater acoustic images) is pre-processed to form the whole underwater acoustic image, and the relevant position information of objects is extracted and determined. An improved method of double threshold segmentation is proposed to resolve the problem that the threshold cannot be adjusted adaptively in the traditional method. Second, a representation of region information is created in light of the Gaussian particle filter. The weighted integration strategy combining the area and invariant moment is proposed to perfect the weight of particles and to enhance the tracking robustness. Results obtained on the real acoustic vision platform of AUV during sea trials are displayed and discussed. They show that the proposed method can detect and track the moving objects underwater online, and it is effective and robust.展开更多
This paper describes a new framework for detection and tracking of underwater pipeline, which includes software system and hardware system. It is designed for vision system of AUV based on monocular CCD camera. First,...This paper describes a new framework for detection and tracking of underwater pipeline, which includes software system and hardware system. It is designed for vision system of AUV based on monocular CCD camera. First, the real-time data flow from image capture card is pre-processed and pipeline features are extracted for navigation. The region saturation degree is advanced to remove false edge point group after Sobel operation. An appropriate way is proposed to clear the disturbance around the peak point in the process of Hough transform. Second, the continuity of pipeline layout is taken into account to improve the efficiency of line extraction. Once the line information has lbeen obtained, the reference zone is predicted by Kalman filter. It denotes the possible appearance position of the pipeiine in the image. Kalman filter is used to estimate this position in next frame so that the information of pipeline of each frame can be known in advance. Results obtained on real optic vision data in tank experiment are displayed and discussed. They show that the proposed system can detect and track the underwater pipeline online, and is effective and feasible.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51009040)Heilongjiang Postdoctoral Fund(Grant No.LBH-Z11205)+1 种基金the National High Technology Research and Development Program of China(863 Program,Grant No.2011AA09A106)the China Postdoctoral Science Foundation(Grant No.2012M510928)
文摘This paper describes a new framework for object detection and tracking of AUV including underwater acoustic data interpolation, underwater acoustic images segmentation and underwater objects tracking. This framework is applied to the design of vision-based method for AUV based on the forward looking sonar sensor. First, the real-time data flow (underwater acoustic images) is pre-processed to form the whole underwater acoustic image, and the relevant position information of objects is extracted and determined. An improved method of double threshold segmentation is proposed to resolve the problem that the threshold cannot be adjusted adaptively in the traditional method. Second, a representation of region information is created in light of the Gaussian particle filter. The weighted integration strategy combining the area and invariant moment is proposed to perfect the weight of particles and to enhance the tracking robustness. Results obtained on the real acoustic vision platform of AUV during sea trials are displayed and discussed. They show that the proposed method can detect and track the moving objects underwater online, and it is effective and robust.
基金supported by the National Natural Science Foundation of China (Grant No. 51009040)the National High Technology Research and Development Program of China (863 Program,Grant No. 2011AA09A106)+1 种基金the China Postdoctoral Science Foundation (Grant No. 2012M510928)Heilongjiang Postdoctoral Fund
文摘This paper describes a new framework for detection and tracking of underwater pipeline, which includes software system and hardware system. It is designed for vision system of AUV based on monocular CCD camera. First, the real-time data flow from image capture card is pre-processed and pipeline features are extracted for navigation. The region saturation degree is advanced to remove false edge point group after Sobel operation. An appropriate way is proposed to clear the disturbance around the peak point in the process of Hough transform. Second, the continuity of pipeline layout is taken into account to improve the efficiency of line extraction. Once the line information has lbeen obtained, the reference zone is predicted by Kalman filter. It denotes the possible appearance position of the pipeiine in the image. Kalman filter is used to estimate this position in next frame so that the information of pipeline of each frame can be known in advance. Results obtained on real optic vision data in tank experiment are displayed and discussed. They show that the proposed system can detect and track the underwater pipeline online, and is effective and feasible.