In order to get the spatial grid data of monthly precipitation and monthly average temperature of Sanjiangyuan area, the Co-Kriging (COK) and thin plate smoothing splines(TPS) interpolation methods were applied by usi...In order to get the spatial grid data of monthly precipitation and monthly average temperature of Sanjiangyuan area, the Co-Kriging (COK) and thin plate smoothing splines(TPS) interpolation methods were applied by using the climate data during 1971-2000 of 58 meteorological stations around Qinghai Province and the 3 arc-second digital elevation model (DEM) data. The performance was evaluated by the smallest statistical errors by general cross validation (GCV). Root-mean-squared predicted errors (RMSE) and mean absolute errors (MAE) were used to compare the performance of the two methods. The results showed that: 1) After combing covariates into the models, both methods performed better; 2) The performance of TPS was significantly better than COK: for monthly average temperature, the RMSE derived from TPS was 69.48% higher than COK, as MAE increased by 70.56%. And for monthly precipitation, the RMSE derived from TPS was 28.07% higher than COK, as MAE increased by 29.06%.展开更多
基金Supported by Forestry Science and Technology Support Project (2008BADB0B0203)National Technology Support Project (2007BAC03A08-5)
文摘In order to get the spatial grid data of monthly precipitation and monthly average temperature of Sanjiangyuan area, the Co-Kriging (COK) and thin plate smoothing splines(TPS) interpolation methods were applied by using the climate data during 1971-2000 of 58 meteorological stations around Qinghai Province and the 3 arc-second digital elevation model (DEM) data. The performance was evaluated by the smallest statistical errors by general cross validation (GCV). Root-mean-squared predicted errors (RMSE) and mean absolute errors (MAE) were used to compare the performance of the two methods. The results showed that: 1) After combing covariates into the models, both methods performed better; 2) The performance of TPS was significantly better than COK: for monthly average temperature, the RMSE derived from TPS was 69.48% higher than COK, as MAE increased by 70.56%. And for monthly precipitation, the RMSE derived from TPS was 28.07% higher than COK, as MAE increased by 29.06%.