One method to show the existence of ω-periodic system is given. This method is based on the ultimately boundedness of the solution of the systems. By using comparing theorem and discussing some one dimensional equati...One method to show the existence of ω-periodic system is given. This method is based on the ultimately boundedness of the solution of the systems. By using comparing theorem and discussing some one dimensional equations the main results are obtained.展开更多
The main purpose of this paper is to set up the finite difference scheme with incremental unknowns for the nonlinear differential equation by means of introducing incremental unknowns method and discuss the stability ...The main purpose of this paper is to set up the finite difference scheme with incremental unknowns for the nonlinear differential equation by means of introducing incremental unknowns method and discuss the stability of the scheme.Through the stability analyzing for the scheme,it was shown that the stability of the finite difference scheme with the incremental unknowns is improved when compared with the stability of the corresponding classic difference scheme.展开更多
基金Supported by the Natural Science Foundation of the Education Department of Henan Province(2010A100003)National Natural Science Foundation of China(40805020)
基金Supported by the Natural Science Foundation of the Education Department of Henan Province(2010A100003)the National Natural Science Foundation of China(40805020)
文摘One method to show the existence of ω-periodic system is given. This method is based on the ultimately boundedness of the solution of the systems. By using comparing theorem and discussing some one dimensional equations the main results are obtained.
文摘The main purpose of this paper is to set up the finite difference scheme with incremental unknowns for the nonlinear differential equation by means of introducing incremental unknowns method and discuss the stability of the scheme.Through the stability analyzing for the scheme,it was shown that the stability of the finite difference scheme with the incremental unknowns is improved when compared with the stability of the corresponding classic difference scheme.