期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于GAN-DCNN的树叶识别
1
作者 徐竞怡 张志 +1 位作者 闫飞 张雯悦 《林业科学》 EI CAS CSCD 北大核心 2024年第4期40-51,共12页
【目的】利用深度学习进行树叶识别时需要大量训练样本,当样本量不足、图像风格单一会导致识别准确率不稳定。研究利用少量的样本进行树叶图像增殖和风格转换,可极大减轻数据采集的负担,为提升林业调查信息化、智能化提供有效的技术手... 【目的】利用深度学习进行树叶识别时需要大量训练样本,当样本量不足、图像风格单一会导致识别准确率不稳定。研究利用少量的样本进行树叶图像增殖和风格转换,可极大减轻数据采集的负担,为提升林业调查信息化、智能化提供有效的技术手段和理论支撑。【方法】采集6种树种的树叶图像建立数据集,引入light-weight GAN对图像进行增殖和风格转换,扩充人工拍摄的树叶数据集,通过在该数据集与原数据集上分别应用AlexNet、GoogLeNet、ResNet34和ShuffleNetV2四种深度卷积神经网络进行训练,分析生成对抗网络的图像增殖技术在树叶识别中的作用。综合模型准确率和训练时间等性能指标选择最优模型,同时对模型的学习率进行调整。使用测试样本对参数优化后的模型进行验证,分析该方法在实践中的可行性和意义。【结果】基于生成对抗网络生成的样本具有高清晰度,高保真性,能够有效地辅助神经网络模型的训练工作,同时也丰富了样本类别,使之获得包含更多不同季节、形状、健康状况的树叶图像。与原始数据集相比,AlexNet、GoogLeNet、ResNet34和ShuffleNetV2四种网络在新数据集的训练上均表现出训练误差更小、验证精度更高的特点,其中学习率为0.01的ShuffleNetV2模型对该数据集的训练效果最好,训练时最高验证精度为99.7%。使用未参与训练的测试样本对该模型进行验证,模型对各树叶的识别效果较好,模型的总体识别准确率高达99.8%。与未使用GAN技术的普通深度卷积神经网络相比,本文提出的模型对树叶识别准确率明显提升。【结论】生成对抗网络可以有效地扩充图像数量,对图像进行风格转换,与深度卷积神经网络相结合,可以显著提高树叶识别准确率,适合应用于林业树叶识别领域。 展开更多
关键词 树叶识别 生成对抗网络 深度卷积神经网络
下载PDF
基于注意力机制的树木叶片分类识别方法研究
2
作者 赵新瑞 张雯悦 +1 位作者 徐竞怡 闫飞 《高原农业》 2024年第4期393-403,共11页
本文将注意力机制分类模型——Vision Transformer(ViT)应用于树种分类识别任务,旨在探索更高精度和更高效率的树种识别模型。本研究共设计了三组对比实验:(1)用ViT和ResNet50在实验环境的数据集上进行训练、验证和测试,(2)为Vi T模型... 本文将注意力机制分类模型——Vision Transformer(ViT)应用于树种分类识别任务,旨在探索更高精度和更高效率的树种识别模型。本研究共设计了三组对比实验:(1)用ViT和ResNet50在实验环境的数据集上进行训练、验证和测试,(2)为Vi T模型设置不同的深度进行训练,(3)用ViT和ResNet50在真实环境的数据集上进行训练、验证和测试。结果表明,无论是实验环境的数据集,还是真实环境的数据集,ViT模型都达到了与ResNet50模型相当的分类性能,并且ViT模型的时间效率明显优于ResNet50。此外,本研究还展示了Vi T对真实环境的图像进行分类时的类激活热力图,发现ViT模型更关注树叶本身尤其是树叶边缘而忽略了复杂的背景,从而有效提高了分类精度。结果说明,两个模型分类精度相当,但ViT的收敛速度明显更快,学习特征的能力更强,泛化能力也更强。本研究是将ViT应用在树种分类识别这一具体任务上的一次有益尝试,为后续融合ViT与CNN优势,以更高的效率、更小的数据需求、在更复杂的高原林业数据集上进行树种识别研究奠定基础。 展开更多
关键词 树种识别 注意力机制 卷积神经网络 可视化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部