Non-local means(NLM)method is a state-of-the-art denoising algorithm, which replaces each pixel with a weighted average of all the pixels in the image. However, the huge computational complexity makes it impractical f...Non-local means(NLM)method is a state-of-the-art denoising algorithm, which replaces each pixel with a weighted average of all the pixels in the image. However, the huge computational complexity makes it impractical for real applications. Thus, a fast non-local means algorithm based on Krawtchouk moments is proposed to improve the denoising performance and reduce the computing time. Krawtchouk moments of each image patch are calculated and used in the subsequent similarity measure in order to perform a weighted averaging. Instead of computing the Euclidean distance of two image patches, the similarity measure is obtained by low-order Krawtchouk moments, which can reduce a lot of computational complexity. Since Krawtchouk moments can extract local features and have a good antinoise ability, they can classify the useful information out of noise and provide an accurate similarity measure. Detailed experiments demonstrate that the proposed method outperforms the original NLM method and other moment-based methods according to a comprehensive consideration on subjective visual quality, method noise, peak signal to noise ratio(PSNR), structural similarity(SSIM) index and computing time. Most importantly, the proposed method is around 35 times faster than the original NLM method.展开更多
An improved preprocessed Yaroslavsky filter(IPYF)is proposed to avoid the nick effects and obtain a better denoising result when the noise variance is unknown.Different from its predecessors,the similarity between t...An improved preprocessed Yaroslavsky filter(IPYF)is proposed to avoid the nick effects and obtain a better denoising result when the noise variance is unknown.Different from its predecessors,the similarity between two pixels is calculated by shearlet features.The feature vector consists of initial denoised results by the non-subsampled shearlet transform hard thresholding(NSST-HT)and NSST coefficients,which can help allocate the averaging weights more reasonably.With the correct estimated noise variance,the NSST-HT can provide good denoised results as the initial estimation and high-frequency coefficients contribute large weights to preserve textures.In case of the incorrect estimated noise variance,the low-frequency coefficients will mitigate the nick effect in cartoon regions greatly,making the IPYF more robust than the original PYF.Detailed experimental results show that the IPYF is a very competitive method based on a comprehensive consideration involving peak signal to noise ratio(PSNR),computing time,visual quality and method noise.展开更多
基金Supported by the Open Fund of State Key Laboratory of Marine Geology,Tongji University(No.MGK1412)Open Fund(No.PLN1303)of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University)+2 种基金Open Fund of Jiangsu Key Laboratory of Quality Control and Further Processing of Cereals and Oils,Nanjing University of Finance Economics(No.LYPK201304)Foundation of Graduate Innovation Center in NUAA(No.kfjj201430)Fundamental Research Funds for the Central Universities
文摘Non-local means(NLM)method is a state-of-the-art denoising algorithm, which replaces each pixel with a weighted average of all the pixels in the image. However, the huge computational complexity makes it impractical for real applications. Thus, a fast non-local means algorithm based on Krawtchouk moments is proposed to improve the denoising performance and reduce the computing time. Krawtchouk moments of each image patch are calculated and used in the subsequent similarity measure in order to perform a weighted averaging. Instead of computing the Euclidean distance of two image patches, the similarity measure is obtained by low-order Krawtchouk moments, which can reduce a lot of computational complexity. Since Krawtchouk moments can extract local features and have a good antinoise ability, they can classify the useful information out of noise and provide an accurate similarity measure. Detailed experiments demonstrate that the proposed method outperforms the original NLM method and other moment-based methods according to a comprehensive consideration on subjective visual quality, method noise, peak signal to noise ratio(PSNR), structural similarity(SSIM) index and computing time. Most importantly, the proposed method is around 35 times faster than the original NLM method.
基金Supported by Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University)(PL N1303)Open Fund of State Key Laboratory of Marine Geology(Tongji University)(MGK1412)+1 种基金Fundation of Graduate Innovation Center in NUAA(kfjj201430)the Fundamental Research Funds for the Central Universities
文摘An improved preprocessed Yaroslavsky filter(IPYF)is proposed to avoid the nick effects and obtain a better denoising result when the noise variance is unknown.Different from its predecessors,the similarity between two pixels is calculated by shearlet features.The feature vector consists of initial denoised results by the non-subsampled shearlet transform hard thresholding(NSST-HT)and NSST coefficients,which can help allocate the averaging weights more reasonably.With the correct estimated noise variance,the NSST-HT can provide good denoised results as the initial estimation and high-frequency coefficients contribute large weights to preserve textures.In case of the incorrect estimated noise variance,the low-frequency coefficients will mitigate the nick effect in cartoon regions greatly,making the IPYF more robust than the original PYF.Detailed experimental results show that the IPYF is a very competitive method based on a comprehensive consideration involving peak signal to noise ratio(PSNR),computing time,visual quality and method noise.