An experimental study of cavity oscillating flow carried out on subsonic wall jet facilities in an anechoic room is summarized. The jet exit Mach number range is from 0.2 to 0.8. The effects of the flow Mach number (...An experimental study of cavity oscillating flow carried out on subsonic wall jet facilities in an anechoic room is summarized. The jet exit Mach number range is from 0.2 to 0.8. The effects of the flow Mach number ( Ma ) and the cavity depth ( D ) on the oscillation are studied. It is found that for L/D =4, (shallow cavity), the oscillation is mainly due to the self exciting of the free shear layer above the cavity opening, for L/D =2, the acoustic resonance is responsible for the oscillation. Preliminary tests are performed to study the suppression effect of the leading edge tone excitation on cavity flow, and considerable reduction of oscillation has been achieved when Ma ≤0.6.展开更多
文摘An experimental study of cavity oscillating flow carried out on subsonic wall jet facilities in an anechoic room is summarized. The jet exit Mach number range is from 0.2 to 0.8. The effects of the flow Mach number ( Ma ) and the cavity depth ( D ) on the oscillation are studied. It is found that for L/D =4, (shallow cavity), the oscillation is mainly due to the self exciting of the free shear layer above the cavity opening, for L/D =2, the acoustic resonance is responsible for the oscillation. Preliminary tests are performed to study the suppression effect of the leading edge tone excitation on cavity flow, and considerable reduction of oscillation has been achieved when Ma ≤0.6.