Microstructure evolution and texture development and their effects on mechanical properties of a Mg-Gd-Y-Zr alloy during equal channel angular pressing(ECAP) were investigated.It is found that the microstructure is ...Microstructure evolution and texture development and their effects on mechanical properties of a Mg-Gd-Y-Zr alloy during equal channel angular pressing(ECAP) were investigated.It is found that the microstructure is still inhomogeneous after four passes,and two zones,namely the fine grain zone(FGZ) and the coarse grain zone(CGZ) are formed.The grain refinement occurs mainly by particle-stimulated nucleation(PSN) mechanism,which led to a more random texture after four passes of ECAP.In the ECAP-processed alloy,the strength did not increase while the ductility was enhanced dramatically compared with the as-received condition.The change of ductility of this alloy was discussed in terms of texture and second phase particles.展开更多
Separated specimens of Ti-6Al-4V alloy were dynamically loaded at a strain rate of 3 900 s-1 using a split Hopkinson pressure bar(SHPB) apparatus.The fracture features of the separated specimens were investigated by...Separated specimens of Ti-6Al-4V alloy were dynamically loaded at a strain rate of 3 900 s-1 using a split Hopkinson pressure bar(SHPB) apparatus.The fracture features of the separated specimens were investigated by a scanning electron microscope.The results show that adiabatic shear failure occurs in the tested specimens,and two typical areas(dimple and smooth areas) with different features are alternatively distributed on the whole fracture surface.The dimple areas originate from voids generation and coalescence,exhibiting ductile fracture characteristics.Simultaneously,ultrafine grains(UFGs) and microcracks among grains are observed on the smooth areas,indicating that the emergence of UFG areas is caused by the propagation of microcracks along grain boundaries and exhibits brittle fracture characteristics.Fracture occurring in adiabatic shear bands is not uniform and ultimate rupture is resulted from ductile and brittle fracture modes.展开更多
文摘Microstructure evolution and texture development and their effects on mechanical properties of a Mg-Gd-Y-Zr alloy during equal channel angular pressing(ECAP) were investigated.It is found that the microstructure is still inhomogeneous after four passes,and two zones,namely the fine grain zone(FGZ) and the coarse grain zone(CGZ) are formed.The grain refinement occurs mainly by particle-stimulated nucleation(PSN) mechanism,which led to a more random texture after four passes of ECAP.In the ECAP-processed alloy,the strength did not increase while the ductility was enhanced dramatically compared with the as-received condition.The change of ductility of this alloy was discussed in terms of texture and second phase particles.
文摘Separated specimens of Ti-6Al-4V alloy were dynamically loaded at a strain rate of 3 900 s-1 using a split Hopkinson pressure bar(SHPB) apparatus.The fracture features of the separated specimens were investigated by a scanning electron microscope.The results show that adiabatic shear failure occurs in the tested specimens,and two typical areas(dimple and smooth areas) with different features are alternatively distributed on the whole fracture surface.The dimple areas originate from voids generation and coalescence,exhibiting ductile fracture characteristics.Simultaneously,ultrafine grains(UFGs) and microcracks among grains are observed on the smooth areas,indicating that the emergence of UFG areas is caused by the propagation of microcracks along grain boundaries and exhibits brittle fracture characteristics.Fracture occurring in adiabatic shear bands is not uniform and ultimate rupture is resulted from ductile and brittle fracture modes.