Based on the uniaxial compression creep experiments conducted on bauxite sandstone obtained from Sanmenxia,typical creep experiment curves were obtained.From the characteristics of strain component of creep curves,the...Based on the uniaxial compression creep experiments conducted on bauxite sandstone obtained from Sanmenxia,typical creep experiment curves were obtained.From the characteristics of strain component of creep curves,the creep strain is composed of instantaneous elastic strain,ε(me),instantaneous plastic strain,ε(mp),viscoelastic strain,ε(ce),and viscoplastic strain,ε(cp).Based on the characteristics of instantaneous plastic strain,a new element of instantaneous plastic rheology was introduced,instantaneous plastic modulus was defined,and the modified Burgers model was established.Then identification of direct screening method in this model was completed.According to the mechanical properties of rheological elements,one- and three-dimensional creep equations in different stress levels were obtained.One-dimensional model parameters were identified by the method of least squares,and in the process of computation,Gauss-Newton iteration method was applied.Finally,by fitting the experimental curves,the correctness of direct method model was verified,then the examination of posterior exclusive method of the model was accomplished.The results showed that in the improved Burgers models,the rheological characteristics of sandstone are embodied properly,microscopic analysis of creep curves is also achieved,and the correctness of comprehensive identification method of rheological model is verified.展开更多
In this paper, the elastic solutions of concentrated force acting in orthogonal anisotropic half-plane are derived by imaginal method and the formulae of coefficient matrix for constant element are put forward. To sol...In this paper, the elastic solutions of concentrated force acting in orthogonal anisotropic half-plane are derived by imaginal method and the formulae of coefficient matrix for constant element are put forward. To solve half-plane problems numerically by BEM, this paper provides the necessary formulae. Because the expressions of fundamental solutions are very simple, the. object functions could be obtained for every integral of constant element and higher order element of indirect BEM. Thus, the procedure of integration could be avoided in calculation program展开更多
In order to reveal the changing law of the mechanical response of asphalt pavements under the action of vehicle load and provide references for the design of durable pavements,three typical asphalt pavement structures...In order to reveal the changing law of the mechanical response of asphalt pavements under the action of vehicle load and provide references for the design of durable pavements,three typical asphalt pavement structures with flexible base(S1),combined base(S2),and semi-rigid base(S3)were selected to perform field strain tests under static and dynamic load using the fiber Bragg grating optical sensing technology.The changing characteristics of the strain field along the horizontal and depth directions of pavements were analyzed.The results indicate that the most unfavorable asphalt pavement layers were the upper-middle surface layer and the lower base layer.In addition,the most unfavorable loading positions on the surface layer and the base layer were the center of wheel load and the gap center between two wheels,respectively.The most unfavorable layer of the surface layers gradually moved from the lower layer to the upper layer with the increase of base layer modulus.The power function relationships between structural layer strain and vehicle speed were revealed.The semi-rigid base asphalt pavement was the most durable pavement type,since its strain value was lower compared to those of the other structures.展开更多
基金Projects (51174228,51274249) supported by the National Natural Science Foundation of China
文摘Based on the uniaxial compression creep experiments conducted on bauxite sandstone obtained from Sanmenxia,typical creep experiment curves were obtained.From the characteristics of strain component of creep curves,the creep strain is composed of instantaneous elastic strain,ε(me),instantaneous plastic strain,ε(mp),viscoelastic strain,ε(ce),and viscoplastic strain,ε(cp).Based on the characteristics of instantaneous plastic strain,a new element of instantaneous plastic rheology was introduced,instantaneous plastic modulus was defined,and the modified Burgers model was established.Then identification of direct screening method in this model was completed.According to the mechanical properties of rheological elements,one- and three-dimensional creep equations in different stress levels were obtained.One-dimensional model parameters were identified by the method of least squares,and in the process of computation,Gauss-Newton iteration method was applied.Finally,by fitting the experimental curves,the correctness of direct method model was verified,then the examination of posterior exclusive method of the model was accomplished.The results showed that in the improved Burgers models,the rheological characteristics of sandstone are embodied properly,microscopic analysis of creep curves is also achieved,and the correctness of comprehensive identification method of rheological model is verified.
文摘In this paper, the elastic solutions of concentrated force acting in orthogonal anisotropic half-plane are derived by imaginal method and the formulae of coefficient matrix for constant element are put forward. To solve half-plane problems numerically by BEM, this paper provides the necessary formulae. Because the expressions of fundamental solutions are very simple, the. object functions could be obtained for every integral of constant element and higher order element of indirect BEM. Thus, the procedure of integration could be avoided in calculation program
基金Projects(51908071,51708071)supported by National Natural Science Foundation of ChinaProject(2020JJ5975)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(18C0194)supported by the Scientific Research Project of Education Department of Hunan Province,ChinaProject(kfj190301)supported by Open Fund of Key Laboratory of Road Structure and Material of Ministry of Transport(Changsha University of Science&Technology),China。
文摘In order to reveal the changing law of the mechanical response of asphalt pavements under the action of vehicle load and provide references for the design of durable pavements,three typical asphalt pavement structures with flexible base(S1),combined base(S2),and semi-rigid base(S3)were selected to perform field strain tests under static and dynamic load using the fiber Bragg grating optical sensing technology.The changing characteristics of the strain field along the horizontal and depth directions of pavements were analyzed.The results indicate that the most unfavorable asphalt pavement layers were the upper-middle surface layer and the lower base layer.In addition,the most unfavorable loading positions on the surface layer and the base layer were the center of wheel load and the gap center between two wheels,respectively.The most unfavorable layer of the surface layers gradually moved from the lower layer to the upper layer with the increase of base layer modulus.The power function relationships between structural layer strain and vehicle speed were revealed.The semi-rigid base asphalt pavement was the most durable pavement type,since its strain value was lower compared to those of the other structures.