基于输电线路等传变理论分析可知,电容式电压互感器(capacitive voltage transformer,CVT)的暂态特性会造成参与距离保护计算的电压和电流经过的传变环节不一致,是引起距离保护暂态超越的重要因素。因此提出一种等传变快速距离保护方案...基于输电线路等传变理论分析可知,电容式电压互感器(capacitive voltage transformer,CVT)的暂态特性会造成参与距离保护计算的电压和电流经过的传变环节不一致,是引起距离保护暂态超越的重要因素。因此提出一种等传变快速距离保护方案,使保护安装处的三相电压和电流与故障点电压经过相同的传变环节,新方法主要包括3个步骤,即故障点电压的重新构造、虚拟数字传变以及求解R-L模型微分方程。ATP仿真结果表明,所提方法能有效地减小了CVT引起的暂态误差,故障后15 ms左右测距误差不超过5%,明显优于基于CVT暂态误差估计或系统线路阻抗比的各种自适应保护算法(测距误差不超过5%一般需要30 ms以上)。展开更多
文摘基于输电线路等传变理论分析可知,电容式电压互感器(capacitive voltage transformer,CVT)的暂态特性会造成参与距离保护计算的电压和电流经过的传变环节不一致,是引起距离保护暂态超越的重要因素。因此提出一种等传变快速距离保护方案,使保护安装处的三相电压和电流与故障点电压经过相同的传变环节,新方法主要包括3个步骤,即故障点电压的重新构造、虚拟数字传变以及求解R-L模型微分方程。ATP仿真结果表明,所提方法能有效地减小了CVT引起的暂态误差,故障后15 ms左右测距误差不超过5%,明显优于基于CVT暂态误差估计或系统线路阻抗比的各种自适应保护算法(测距误差不超过5%一般需要30 ms以上)。