Support Vector Machines (SVMs) have been widely used in pattern recognition and have also drawn considerable interest in control areas. Based on a method of least squares SVM (LS-SVM) for multivariate function estimat...Support Vector Machines (SVMs) have been widely used in pattern recognition and have also drawn considerable interest in control areas. Based on a method of least squares SVM (LS-SVM) for multivariate function estimation, a generalized inverse system is developed for the linearization and decoupling control of a general nonlinear continuous system. The approach of inverse modelling via LS-SVM and parameters optimization using the Bayesian evidence framework is discussed in detail. In this paper, complex high-order nonlinear system is decoupled into a number of pseudo-linear Single Input Single Output (SISO) subsystems with linear dynamic components. The poles of pseudo-linear subsystems can be configured to desired positions. The proposed method provides an effective alternative to the controller design of plants whose accurate mathematical model is un- known or state variables are difficult or impossible to measure. Simulation results showed the efficacy of the method.展开更多
The concepts of Rough Decision Support System (RDSS) and equivalence matrix are introduced in this paper. Based on a rough attribute vector tree (RAVT) method, two kinds of matrix computation algorithms — Recursive M...The concepts of Rough Decision Support System (RDSS) and equivalence matrix are introduced in this paper. Based on a rough attribute vector tree (RAVT) method, two kinds of matrix computation algorithms — Recursive Matrix Computation (RMC) and Parallel Matrix Computation (PMC) are proposed for rules extraction, attributes reduction and data cleaning finished synchronously. The algorithms emphasize the practicability and efficiency of rules generation. A case study of PMC is analyzed, and a comparison experiment of RMC algorithm shows that it is feasible and efficient for data mining and knowledge-discovery in RDSS.展开更多
By combining the wavelet decomposition with kernel method, a practical approach of universal multiscale wavelet kernels constructed in reproducing kernel Hilbert space (RKHS) is discussed, and an identification sche...By combining the wavelet decomposition with kernel method, a practical approach of universal multiscale wavelet kernels constructed in reproducing kernel Hilbert space (RKHS) is discussed, and an identification scheme using wavelet support vector machines (WSVM) estimator is proposed for nordinear dynamic systems. The good approximating properties of wavelet kernel function enhance the generalization ability of the proposed method, and the comparison of some numerical experimental results between the novel approach and some existing methods is encouraging.展开更多
Support vector machines (SVM) have been widely used in pattern recognition and have also drawn considerable interest in control areas. Based on rolling optimization method and on-line learning strategies, a novel appr...Support vector machines (SVM) have been widely used in pattern recognition and have also drawn considerable interest in control areas. Based on rolling optimization method and on-line learning strategies, a novel approach based on weighted least squares support vector machines (WLS-SVM) is proposed for nonlinear dynamic modeling. The good robust property of the novel approach enhances the generalization ability of kernel method-based modeling and some experimental results are presented to illustrate the feasibility of the proposed method.展开更多
On-line monitoring and fault diagnosis of chemical process is extremely important for operation safety and product quality. Principal component analysis (PCA) has been widely used in multivariate statistical process m...On-line monitoring and fault diagnosis of chemical process is extremely important for operation safety and product quality. Principal component analysis (PCA) has been widely used in multivariate statistical process monitoring for its ability to reduce processes dimensions. PCA and other statistical techniques, however, have difficulties in differentiating faults correctly in complex chemical process. Support vector machine (SVM) is a novel approach based on statistical learning theory, which has emerged for feature identification and classification. In this paper, an integrated method is applied for process monitoring and fault diagnosis, which combines PCA for fault feature extraction and multiple SVMs for identification of different fault sources. This approach is verified and illustrated on the Tennessee Eastman benchmark process as a case study. Results show that the proposed PCA-SVMs method has good diagnosis capability and overall diagnosis correctness rate.展开更多
Inspired by the traditional Wold's nonlinear PLS algorithm comprises of NIPALS approach and a spline inner function model,a novel nonlinear partial least squares algorithm based on spline kernel(named SK-PLS)is pr...Inspired by the traditional Wold's nonlinear PLS algorithm comprises of NIPALS approach and a spline inner function model,a novel nonlinear partial least squares algorithm based on spline kernel(named SK-PLS)is proposed for nonlinear modeling in the presence of multicollinearity.Based on the inner-product kernel spanned by the spline basis functions with infinite number of nodes,this method firstly maps the input data into a high-dimensional feature space,and then calculates a linear PLS model with reformed NIPALS procedure in the feature space and gives a unified framework of traditional PLS "kernel" algorithms in consequence.The linear PLS in the feature space corresponds to a nonlinear PLS in the original input(primal)space.The good approximating property of spline kernel function enhances the generalization ability of the novel model,and two numerical experiments are given to illustrate the feasibility of the proposed method.展开更多
基金Project supported by the National Basic Research Program (973) of China (No. 2002CB312200), and the Hi-Tech Research and Devel-opment Program (863) of China (No. 2002AA412010)
文摘Support Vector Machines (SVMs) have been widely used in pattern recognition and have also drawn considerable interest in control areas. Based on a method of least squares SVM (LS-SVM) for multivariate function estimation, a generalized inverse system is developed for the linearization and decoupling control of a general nonlinear continuous system. The approach of inverse modelling via LS-SVM and parameters optimization using the Bayesian evidence framework is discussed in detail. In this paper, complex high-order nonlinear system is decoupled into a number of pseudo-linear Single Input Single Output (SISO) subsystems with linear dynamic components. The poles of pseudo-linear subsystems can be configured to desired positions. The proposed method provides an effective alternative to the controller design of plants whose accurate mathematical model is un- known or state variables are difficult or impossible to measure. Simulation results showed the efficacy of the method.
文摘The concepts of Rough Decision Support System (RDSS) and equivalence matrix are introduced in this paper. Based on a rough attribute vector tree (RAVT) method, two kinds of matrix computation algorithms — Recursive Matrix Computation (RMC) and Parallel Matrix Computation (PMC) are proposed for rules extraction, attributes reduction and data cleaning finished synchronously. The algorithms emphasize the practicability and efficiency of rules generation. A case study of PMC is analyzed, and a comparison experiment of RMC algorithm shows that it is feasible and efficient for data mining and knowledge-discovery in RDSS.
基金the National 973 Key Fundamental Research Project of China (Grant No.2002CB312200)
文摘By combining the wavelet decomposition with kernel method, a practical approach of universal multiscale wavelet kernels constructed in reproducing kernel Hilbert space (RKHS) is discussed, and an identification scheme using wavelet support vector machines (WSVM) estimator is proposed for nordinear dynamic systems. The good approximating properties of wavelet kernel function enhance the generalization ability of the proposed method, and the comparison of some numerical experimental results between the novel approach and some existing methods is encouraging.
基金This work was supportedin part bythe national 973 keyfundamental research project of China under grant 2002CB312200 and national 863high technology projects foundation of China under grant 2002AA412010
文摘Support vector machines (SVM) have been widely used in pattern recognition and have also drawn considerable interest in control areas. Based on rolling optimization method and on-line learning strategies, a novel approach based on weighted least squares support vector machines (WLS-SVM) is proposed for nonlinear dynamic modeling. The good robust property of the novel approach enhances the generalization ability of kernel method-based modeling and some experimental results are presented to illustrate the feasibility of the proposed method.
文摘On-line monitoring and fault diagnosis of chemical process is extremely important for operation safety and product quality. Principal component analysis (PCA) has been widely used in multivariate statistical process monitoring for its ability to reduce processes dimensions. PCA and other statistical techniques, however, have difficulties in differentiating faults correctly in complex chemical process. Support vector machine (SVM) is a novel approach based on statistical learning theory, which has emerged for feature identification and classification. In this paper, an integrated method is applied for process monitoring and fault diagnosis, which combines PCA for fault feature extraction and multiple SVMs for identification of different fault sources. This approach is verified and illustrated on the Tennessee Eastman benchmark process as a case study. Results show that the proposed PCA-SVMs method has good diagnosis capability and overall diagnosis correctness rate.
文摘Inspired by the traditional Wold's nonlinear PLS algorithm comprises of NIPALS approach and a spline inner function model,a novel nonlinear partial least squares algorithm based on spline kernel(named SK-PLS)is proposed for nonlinear modeling in the presence of multicollinearity.Based on the inner-product kernel spanned by the spline basis functions with infinite number of nodes,this method firstly maps the input data into a high-dimensional feature space,and then calculates a linear PLS model with reformed NIPALS procedure in the feature space and gives a unified framework of traditional PLS "kernel" algorithms in consequence.The linear PLS in the feature space corresponds to a nonlinear PLS in the original input(primal)space.The good approximating property of spline kernel function enhances the generalization ability of the novel model,and two numerical experiments are given to illustrate the feasibility of the proposed method.