The dynamic behaviors of water contained in calcium-silicate-hydrate(C-S-H) gel with different water content values from 10%to 30%(by weight),are studied by using an empirical diffusion model(EDM) to analyze the...The dynamic behaviors of water contained in calcium-silicate-hydrate(C-S-H) gel with different water content values from 10%to 30%(by weight),are studied by using an empirical diffusion model(EDM) to analyze the experimental data of quasi-elastic neutron scattering(QENS) spectra at measured temperatures ranging from 230 K to 280 K.In the study,the experimental QENS spectra with the whole Q-range are considered.Several important parameters including the bound/immobile water elastic coefficient A,the bound water index BWI,the Lorentzian with a half-width at half-maximum(HWHM) Γ;(Q) and Γ;(Q),the self-diffusion coefficients D;and D;of water molecules,the average residence times τ;and τ;,and the proton mean squared displacement(MSD)(u;) are obtained.The results show that the QENS spectra can be fitted very well not only for small Q(≤1 A;) but also for large Q.The bound/immobile water fraction in a C-S-H gel sample can be shown by the fitted BWI.The distinction between bound/immobile and mobile water,which includes confined water and ultra-confined water,can be seen by the fitted MSD.All the MSD tend to be the smallest value below 0.25 A;(the MSD of bound/immobile water) as the Q increases to 1.9 A;no matter what the temperature and water content are.Furthermore,by the abrupt changes of the fitted values of D;,τ;,and Γ;(Q),a crossover temperature at 250 K,namely the liquid-to-crystal-like transition temperature,can be identified for confined water in large gel pores(LGPs) and/or small gel pores(SGPs) contained in the C-S-H gel sample with 30% water content.展开更多
The anomalous flow behavior of γ'-Ni_(3)Al phases at high temperature is closely related to the cross-slip of 1/2<110>{111}super-partial dislocations.Generalized stacking fault energy curves(i.e.,Γ-surface...The anomalous flow behavior of γ'-Ni_(3)Al phases at high temperature is closely related to the cross-slip of 1/2<110>{111}super-partial dislocations.Generalized stacking fault energy curves(i.e.,Γ-surfaces)along the lowest energy path can provide a great deal of information on the nucleation and movement of dislocations.With the first-principles calculation,the interplay between Re and W,Mo,Ta,Ti doped at preferential sites and their synergetic influence on Γ-surfaces and ideal shear strength(τ_(max))in γ'-Ni_(3)Al phases are investigated.Similar to single Re-addition,the Suzuki segregation of W at stacking faults is demonstrated to enable to impede the movement of 1/6<112>{111} Shockley partial dislocations and promote the cross-slip of 1/2<110>{111}super-partial dislocations.With the replacement of a part of Re by W,a decreased γ_(APB)^(111)/γ_(APB)^(001) indicates that the anomalous flow behavior of γ'phases at high temperature is not as excellent as the double Re-addition,but an increasedτmax means that the creep rupture strength of Ni-based single crystal superalloys can be benefited from this replacement to some extent,especially in the co-segregation of Re and W at Al−Al sites.As the interaction between X1_(Al) and X2_(Al) point defects is characterized by an correlation energy function ΔE^(X1_(Al)+X2_(Al))(d),it is found that both strong attraction and strong repulsion are unfavarable for the improvement of yield strengths of γ'phase.展开更多
文摘The dynamic behaviors of water contained in calcium-silicate-hydrate(C-S-H) gel with different water content values from 10%to 30%(by weight),are studied by using an empirical diffusion model(EDM) to analyze the experimental data of quasi-elastic neutron scattering(QENS) spectra at measured temperatures ranging from 230 K to 280 K.In the study,the experimental QENS spectra with the whole Q-range are considered.Several important parameters including the bound/immobile water elastic coefficient A,the bound water index BWI,the Lorentzian with a half-width at half-maximum(HWHM) Γ;(Q) and Γ;(Q),the self-diffusion coefficients D;and D;of water molecules,the average residence times τ;and τ;,and the proton mean squared displacement(MSD)(u;) are obtained.The results show that the QENS spectra can be fitted very well not only for small Q(≤1 A;) but also for large Q.The bound/immobile water fraction in a C-S-H gel sample can be shown by the fitted BWI.The distinction between bound/immobile and mobile water,which includes confined water and ultra-confined water,can be seen by the fitted MSD.All the MSD tend to be the smallest value below 0.25 A;(the MSD of bound/immobile water) as the Q increases to 1.9 A;no matter what the temperature and water content are.Furthermore,by the abrupt changes of the fitted values of D;,τ;,and Γ;(Q),a crossover temperature at 250 K,namely the liquid-to-crystal-like transition temperature,can be identified for confined water in large gel pores(LGPs) and/or small gel pores(SGPs) contained in the C-S-H gel sample with 30% water content.
基金the financial supports from the National Natural Science Foundation of China(Nos.51871096,52071136).
文摘The anomalous flow behavior of γ'-Ni_(3)Al phases at high temperature is closely related to the cross-slip of 1/2<110>{111}super-partial dislocations.Generalized stacking fault energy curves(i.e.,Γ-surfaces)along the lowest energy path can provide a great deal of information on the nucleation and movement of dislocations.With the first-principles calculation,the interplay between Re and W,Mo,Ta,Ti doped at preferential sites and their synergetic influence on Γ-surfaces and ideal shear strength(τ_(max))in γ'-Ni_(3)Al phases are investigated.Similar to single Re-addition,the Suzuki segregation of W at stacking faults is demonstrated to enable to impede the movement of 1/6<112>{111} Shockley partial dislocations and promote the cross-slip of 1/2<110>{111}super-partial dislocations.With the replacement of a part of Re by W,a decreased γ_(APB)^(111)/γ_(APB)^(001) indicates that the anomalous flow behavior of γ'phases at high temperature is not as excellent as the double Re-addition,but an increasedτmax means that the creep rupture strength of Ni-based single crystal superalloys can be benefited from this replacement to some extent,especially in the co-segregation of Re and W at Al−Al sites.As the interaction between X1_(Al) and X2_(Al) point defects is characterized by an correlation energy function ΔE^(X1_(Al)+X2_(Al))(d),it is found that both strong attraction and strong repulsion are unfavarable for the improvement of yield strengths of γ'phase.