We investigate the effect of N2 addition during sputtering on the microstructure and magnetic properties of FePt-Al2O3 thin films. The texture of FePt phase in FePt-Al2O3 thin films changes from (111) to a more rand...We investigate the effect of N2 addition during sputtering on the microstructure and magnetic properties of FePt-Al2O3 thin films. The texture of FePt phase in FePt-Al2O3 thin films changes from (111) to a more random orientation by N2 addition during sputtering. The ordering temperature of FePt phase reduces about 100℃ with appropriate N2 partial pressure. A larger coercivity of 6.0 × 10^5 Aim is obtained with N2 partial pressure about 15%. Structural analysis reveals that a small quantity of Fe3N phase forms during sputtering and the release of N atoms during the post annealing induces a large number of vacancies in the films, which benefits to the transformation of FePt phase from fcc to fct.展开更多
Spintronics is a new discipline focusing on the research and application of electronic spin properties. After the discovery of the giant magnetoresistance effect in 1988, spintronics has had a huge impact on scientifi...Spintronics is a new discipline focusing on the research and application of electronic spin properties. After the discovery of the giant magnetoresistance effect in 1988, spintronics has had a huge impact on scientific progress and related applications in the development of information technology. In recent decades, the main motivation in spintronics has been efficiently controlling local magnetization using electron flow or voltage rather than controlling the electron flow using magnetization. Using spin-orbit coupling in a material can convert a charge current into a pure spin current(a flow of spin momenta without a charge flow) and generate a spin-orbit torque on the adjacent ferromagnets. The ability of spintronic devices to utilize spin-orbit torques to manipulate the magnetization has resulted in large-scale developments such as magnetic random-access memories and has boosted the spintronic research area. Here in, we review the theoretical and experimental results that have established this subfield of spintronics. We introduce the concept of a pure spin current and spin-orbit torques within the experimental framework, and we review transport-, magnetization-dynamics-, and opticalbased measurements and link then to both phenomenological and microscopic theories of the effect. The focus is on the related progress reported from Chinese universities and institutes, and we specifically highlight the contributions made by Chinese researchers.展开更多
The soft/hard composite patterned media have potential to be the next generation of magnetic recording, but the composing modes of soft and hard materials have not been investigated systematically. L10 FePt-based soft...The soft/hard composite patterned media have potential to be the next generation of magnetic recording, but the composing modes of soft and hard materials have not been investigated systematically. L10 FePt-based soft/hard composite patterned media with an anisotropic constant distribution are studied by micromagnetic simulation. Square arrays and hexagonal arrays with various pitch sizes are simulated for two composing types: the soft layer that encloses the hard dots and the soft layer that covers the whole surface. It is found that the soft material can reduce the switching fields of bits effectively for all models. Compared with the first type, the second type of models possess low switching fields, narrow switching field distributions, and high gain factors due to the introduction of inter-bit exchange coupling. Furthermore, the readout waveforms of the second type are not deteriorated by the inter-bit soft layers. Since the recording density of hexagonal arrays are higher than that of square arrays with the same center-to-center distances, the readout waveforrns of hexagonal arrays are a little worse, although other simulation results are similar for these two arrays.展开更多
文摘We investigate the effect of N2 addition during sputtering on the microstructure and magnetic properties of FePt-Al2O3 thin films. The texture of FePt phase in FePt-Al2O3 thin films changes from (111) to a more random orientation by N2 addition during sputtering. The ordering temperature of FePt phase reduces about 100℃ with appropriate N2 partial pressure. A larger coercivity of 6.0 × 10^5 Aim is obtained with N2 partial pressure about 15%. Structural analysis reveals that a small quantity of Fe3N phase forms during sputtering and the release of N atoms during the post annealing induces a large number of vacancies in the films, which benefits to the transformation of FePt phase from fcc to fct.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11674142,51771099,11429401,and 51471081)the Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT-16R35)
文摘Spintronics is a new discipline focusing on the research and application of electronic spin properties. After the discovery of the giant magnetoresistance effect in 1988, spintronics has had a huge impact on scientific progress and related applications in the development of information technology. In recent decades, the main motivation in spintronics has been efficiently controlling local magnetization using electron flow or voltage rather than controlling the electron flow using magnetization. Using spin-orbit coupling in a material can convert a charge current into a pure spin current(a flow of spin momenta without a charge flow) and generate a spin-orbit torque on the adjacent ferromagnets. The ability of spintronic devices to utilize spin-orbit torques to manipulate the magnetization has resulted in large-scale developments such as magnetic random-access memories and has boosted the spintronic research area. Here in, we review the theoretical and experimental results that have established this subfield of spintronics. We introduce the concept of a pure spin current and spin-orbit torques within the experimental framework, and we review transport-, magnetization-dynamics-, and opticalbased measurements and link then to both phenomenological and microscopic theories of the effect. The focus is on the related progress reported from Chinese universities and institutes, and we specifically highlight the contributions made by Chinese researchers.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51171086 and 61272076)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.61003041)
文摘The soft/hard composite patterned media have potential to be the next generation of magnetic recording, but the composing modes of soft and hard materials have not been investigated systematically. L10 FePt-based soft/hard composite patterned media with an anisotropic constant distribution are studied by micromagnetic simulation. Square arrays and hexagonal arrays with various pitch sizes are simulated for two composing types: the soft layer that encloses the hard dots and the soft layer that covers the whole surface. It is found that the soft material can reduce the switching fields of bits effectively for all models. Compared with the first type, the second type of models possess low switching fields, narrow switching field distributions, and high gain factors due to the introduction of inter-bit exchange coupling. Furthermore, the readout waveforms of the second type are not deteriorated by the inter-bit soft layers. Since the recording density of hexagonal arrays are higher than that of square arrays with the same center-to-center distances, the readout waveforrns of hexagonal arrays are a little worse, although other simulation results are similar for these two arrays.