摔倒事件严重影响老年人的生命健康,对摔倒行为进行检测可以降低老年人再次跌倒的风险,从而保证其生活能力以及提高生活质量。目前基于视觉的摔倒检测方法在实验数据集上能够取得较好的精度,但是无法很好地泛化到现实环境中,在实际应用...摔倒事件严重影响老年人的生命健康,对摔倒行为进行检测可以降低老年人再次跌倒的风险,从而保证其生活能力以及提高生活质量。目前基于视觉的摔倒检测方法在实验数据集上能够取得较好的精度,但是无法很好地泛化到现实环境中,在实际应用时往往并不符合动作判断逻辑。针对该问题,对比光流法以及基于人体姿态估计的方法,在2D人体姿态估计的基础上提出一种鲁棒的摔倒检测方法。设计一种摔倒检测优化框架,构建融合多特征与语义图卷积的检测模型,采用更贴合动作判断逻辑的训练策略对该模型进行训练,以提高摔倒检测系统在现实环境中的泛化性。在Le2i Fall Detection Dataset、UP Fall Detection Dataset和Multiple Cameras Fall Detection Dataset这3个公开数据集以及自收集数据集上进行实验,结果表明,该模型的总体检测准确率达到98.3%,基于所提优化框架与训练策略的模型配合YOLOv3和Alpha_pose实现的整体摔倒检测方法在GTX1060显卡中帧率达到约25FPS,在现实场景测试中体现出较好的鲁棒性,相较以往的基于视觉的检测方法更适合部署在实际应用环境中。展开更多
针对传统全局定位方法存在对传感器要求多、计算量大的问题,提出了一种基于全局特征点匹配的移动机器人定位方法。该方法采用普通2D雷达作为传感器,在机器人建立全局地图的过程中同步地提取全局特征点,在全局定位算法中,通过建立局部地...针对传统全局定位方法存在对传感器要求多、计算量大的问题,提出了一种基于全局特征点匹配的移动机器人定位方法。该方法采用普通2D雷达作为传感器,在机器人建立全局地图的过程中同步地提取全局特征点,在全局定位算法中,通过建立局部地图和提取局部地图特征点,实时将局部地图特征点和全局地图特征点进行匹配后求解全局位姿。在两个数据集上的测试,结果优于蒙特卡罗自适应定位(adaptive Monte Carlo localization,AMCL)和Cartographer的全局定位效果,运算速度更快。结果表明,与已有的方法相比,该全局定位方法能够更快地完成全局定位和有效减少计算资源的消耗。展开更多
文摘摔倒事件严重影响老年人的生命健康,对摔倒行为进行检测可以降低老年人再次跌倒的风险,从而保证其生活能力以及提高生活质量。目前基于视觉的摔倒检测方法在实验数据集上能够取得较好的精度,但是无法很好地泛化到现实环境中,在实际应用时往往并不符合动作判断逻辑。针对该问题,对比光流法以及基于人体姿态估计的方法,在2D人体姿态估计的基础上提出一种鲁棒的摔倒检测方法。设计一种摔倒检测优化框架,构建融合多特征与语义图卷积的检测模型,采用更贴合动作判断逻辑的训练策略对该模型进行训练,以提高摔倒检测系统在现实环境中的泛化性。在Le2i Fall Detection Dataset、UP Fall Detection Dataset和Multiple Cameras Fall Detection Dataset这3个公开数据集以及自收集数据集上进行实验,结果表明,该模型的总体检测准确率达到98.3%,基于所提优化框架与训练策略的模型配合YOLOv3和Alpha_pose实现的整体摔倒检测方法在GTX1060显卡中帧率达到约25FPS,在现实场景测试中体现出较好的鲁棒性,相较以往的基于视觉的检测方法更适合部署在实际应用环境中。
文摘针对传统全局定位方法存在对传感器要求多、计算量大的问题,提出了一种基于全局特征点匹配的移动机器人定位方法。该方法采用普通2D雷达作为传感器,在机器人建立全局地图的过程中同步地提取全局特征点,在全局定位算法中,通过建立局部地图和提取局部地图特征点,实时将局部地图特征点和全局地图特征点进行匹配后求解全局位姿。在两个数据集上的测试,结果优于蒙特卡罗自适应定位(adaptive Monte Carlo localization,AMCL)和Cartographer的全局定位效果,运算速度更快。结果表明,与已有的方法相比,该全局定位方法能够更快地完成全局定位和有效减少计算资源的消耗。